孙菁
- 作品数:1 被引量:33H指数:1
- 供职机构:瑞典皇家工学院更多>>
- 相关领域:农业科学自动化与计算机技术更多>>
- 基于ALOS遥感数据纹理及纹理指数的柞树蓄积量估测被引量:33
- 2014年
- 以北京市怀柔区柞树林为研究对象,通过计算ALOS卫星2.5 m分辨率融合影像在不同窗口下的纹理特征及衍生纹理指数,采用多元逐步回归模型建立柞树地面实测蓄积量与ALOS影像纹理特征及衍生纹理指数的相关关系,比较纹理特征及衍生纹理指数拟合柞树蓄积量模型的精度,筛选最优反演模型及最优纹理生成窗口。结果表明:同一纹理生成窗口下,基于衍生纹理指数的柞树蓄积量反演模型(R2adj=0.603、RMSE为19.899 4 m3/hm2)精度优于基于纹理特征的柞树蓄积量反演模型(R2adj=0.217、RMSE为27.943 8 m3/hm2);结合同一窗口的纹理特征及衍生纹理指数进行柞树蓄积量建模,精度可进一步提升(R2adj=0.747,RMSE为15.887 6 m3/hm2);基于所有窗口的纹理特征及衍生纹理指数建立多元逐步回归模型,可得到柞树蓄积量估测的最优模型(R2adj=0.807,RMSE为13.856 5 m3/hm2);11×11窗口为最优纹理生成窗口,其对应最优单窗口模型拟合优度为:R2adj=0.747,RMSE为15.887 6 m3/hm2。
- 刘俊毕华兴朱沛林孙菁朱金兆陈涛
- 关键词:柞树蓄积量遥感纹理特征