任冲
- 作品数:3 被引量:59H指数:3
- 供职机构:中国林业科学研究院资源信息研究所更多>>
- 发文基金:国家高技术研究发展计划国家重点基础研究发展计划更多>>
- 相关领域:农业科学更多>>
- 森林地上生物量的多基线InSAR层析估测方法被引量:13
- 2017年
- 【目的】发展一种森林地上生物量(AGB)的多基线干涉合成孔径雷达(InSAR)层析估测方法,解决热带雨林森林AGB遥感估测常规方法的信号"饱和"问题,为区域及全球森林生物量估测和碳储量研究提供关键技术支撑。【方法】以法属圭亚那巴拉库(Paracou)热带雨林为研究对象,以Tropi SAR 2009 P-波段多基线机载SAR数据和85块样地调查数据为主要数据源。首先,根据HH极化层析相对反射率的三维分布信息提取林下地表高度,对HV极化多基线InSAR数据进行地形相位去除;然后,对HV极化多基线InSAR数据进行三维成像,并对其进行地理编码,得到地理坐标空间层析相对反射率的三维分布信息;最后,利用样地调查数据,分析不同高度处层析相对反射率与森林AGB的相关性,进而建立以层析相对反射率为输入特征的森林AGB估测模型,同时采用留一交叉验证法(LOOCV)对其估测模型进行精度评价。【结果】20 m以下各高度处层析相对反射率与森林AGB呈不同程度的负相关关系,以5 m高度处层析相对反射率与森林AGB的负相关性最强(相关系数达到-0.58);20 m以上各高度处层析相对反射率与森林AGB呈不同程度的正相关关系,以25 m高度处层析相对反射率与森林AGB的正相关性最强(相关系数达到0.63)。采用5 m高度处层析相对反射率构建模型的估测精度为88.44%,均方根误差为49.85 t·hm-2(相对均方根误差为13.56%);采用25 m高度处层析相对反射率构建模型的估测精度为88.82%,均方根误差为47.30 t·hm-2(相对均方根误差为12.87%);同时采用5 m和25 m高度处层析相对反射率联合构建模型的估测结果最优,估测精度为89.17%,均方根误差为46.45 t·hm-2(相对均方根误差为12.63%)。【结论】通过多基线InSAR层析技术得到的层析相对反射率信息有效解决了热带雨林森林AGB遥感估测常规方法的信号"饱和"问题。采用5 m和25 m高度处层析相对反射�
- 李兰陈尔学李增元任冲赵磊谷鑫志
- 关键词:多基线INSAR热带雨林
- 多源数据林地类型的精细分类方法被引量:28
- 2016年
- 【目的】探讨复杂中山区域、多源数据支持下,高空间分辨率遥感影像林地类型层次化精细分类方法,以促进高分辨率遥感数据在森林资源调查与监测方面的深入应用。【方法】以嘉陵江上游甘肃省小陇山林业实验局百花林场为研究区,以SPOT5和高分一号(GF-1)遥感影像为主要数据源,综合利用影像光谱特征、植被指数特征、纹理特征与时相特征、地形特征、森林资源"二类调查"成果数据与林相图等辅助信息,及典型地类与主要森林类型外业调查样本数据,发展针对暖温带典型天然次生林区、复杂山区地形条件下高空间分辨率遥感影像林地类型多层次信息提取与森林类型精细识别的有效方法。在分析不同时相影像光谱特征的基础上,构建并优选归一化植被指数(NDVI)、比值植被指数(RVI)、比值短波红外指数(RSI)、差值植被指数(DVI)4种植被指数特征和均值(ME)、同质性(HOM)、非相似性(DIS)、信息熵(ENT)、角二阶距(ASM)、相对峰值(RK)6种纹理特征,引入与主要森林类型空间分布相关的DEM高程值、坡度、坡向3个敏感地形因子,利用不同林地类型时相动态特征和辅助信息特征,在不同层次影像上分别采用适于该层待分信息类别的阈值法、支持向量机(SVM)、多分类器组合(MCC)、人工神经网络(ANN)分类方法,将各层分类结果合并获得整个研究区林地类型精细分类图。最后,采用分层随机抽样的独立检验样本对分类结果中7类林地类型进行精度验证,并对5类主要森林类型精细识别结果进行面积统计,与"二类调查"及影像解译结果各类型面积统计值进行对比分析,进一步从整体上检验分类方法的有效性和分类结果的可信度。【结果】本文所发展的分类方法对林地类型信息提取精度较高,有林地、其他林地、苗圃地等7类林地类型总体分类精度达92.28%,总Kappa系数为0.899 6;油松林、华山�
- 任冲鞠洪波张怀清黄建文郑应选
- 关键词:多源数据多分类器组合林地类型
- 天水市近30年林地动态变化遥感监测研究被引量:18
- 2017年
- [目的]以甘肃省天水市为例,基于遥感影像变化监测技术,探讨黄土高原丘陵沟壑与小陇山-西秦岭山地交接过渡区域近30年来森林(林地)资源空间分布规律、时间变化趋势及变化影响因素。[方法]以1988—2015年5期夏季Landsat TM/OLI遥感影像为主要数据源,结合辅助数据和外业实地样本点,以光谱特征和指数特征为特征变量,分别利用随机森林(RF)和参数优化支持向量机(POSVM)分类器对土地覆盖类型进行分类,然后基于分类后比较法进行森林资源动态变化监测。[结果]分类结果表明,两种分类器的分类效果均较好,且随机森林分类器在分类精度、效率和稳定性方面明显优于参数优化支持向量机分类器。变化监测结果表明,近30年来森林资源总体变化趋势为林地面积先减少后增加。1990—1996年,林地面积减少0.74%;1996—2002年,林地面积减少2.74%;2002—2008年,林地面积增加1.06%;2008—2015年,林地面积增加8.89%。[结论]本研究采用的基于非参数分类器分类后比较法的变化监测技术是复杂地形地貌过渡区森林资源动态变化监测的一种有效途径,在分类结果分析统计的基础上,得出研究区森林资源变化的总体趋势:以2002年(2002年影像)为界,林地总体趋势为先减少后增加,2002年后林地面积增加显著。
- 任冲鞠洪波张怀清黄建文
- 关键词:遥感森林资源