本文提出一种新的半经验地形校正模型SCEDIL(Simple topographic Correction using Estimation of Diffuse Light),该模型通过结合DEM与光学影像数据寻找局部区域内完全光照和阴影的水平像元,并以光照、阴影水平像元的平均反射率值估算局部区域散射辐射比,提高了陡峭山区影像的地形校正精度。以高分一号卫星和Landsat ETM+影像为例,从目视判读和定量分析两个方面,比较分析该算法与传统半经验地形校正算法(C、SCS+C)的校正结果。结果表明:(1)对较为平坦的地形,SCEDIL和C、SCS+C校正都有较好的目视结果;对地面起伏较大的陡峭地形,C、SCS+C校正后,原阴影区域易呈现破碎化特征,SCEDIL校正后,原阴影区域过渡较为平滑。(2)SCEDIL校正后,各波段反射率的均值和标准差优于C、SCS+C校正,SCEDIL校正后,影像总分类精度与同类地物光谱信息均一性均优于C和SCS+C校正。SCEDIL半经验地形校正方法能有效地去除影像中的地形干扰,尤其对陡峭地形的校正效果,优于常规地形校正模型。
国内外针对陆地水体信息提取、洪涝灾害快速响应方面具有较深入的研究,但是多采用发展较早、图像质量可靠的可见光影像及国外星载SAR影像。中国合成孔径雷达(SAR)卫星高分三号(GF-3)已获取了大量多极化、全极化SAR数据,为了将GF-3影像快速应用到环境保护、水资源管理等行业中,本研究分析了水体与其他目标具有的不同后向散射特性,将阈值分割法与马尔可夫随机场(MRF)相结合,发展了一种检测精度较高、自动化程度强的水体信息提取方法。该方法首先通过直方图统计的方法对不同成像模式、不同极化的GF-3影像进行后向散射强度分析,在阈值分割的研究基础上,比较了最大类间方差法(Otsu)和Kittler and Illingworth(KI)二值化法在水体-非水体分类中的效果。然后结合DEM和GF-3轨道参数排除因阴影现象产生的辐射失真对图像概率分布的影响,得到初始的水体信息分布图,再经过Fisher变换和马尔可夫随机场(MRF)的迭代运算,综合利用GF-3影像的多极化信息和空间上下文信息,以最大后验概率准则输出最终的水体分布图。利用了湖南省东北部不同成像模式的两景GF-3影像进行试验,在成像时间接近的光学影像中随机选择检验样点进行精度评价。实验结果表明,KI方法在GF-3水体提取应用中比Otsu方法具有更强的优势,剔除图像阴影区域后,自动化确定的阈值与目视解译阈值更加接近,通过MRF模型优化以后,实现了对水体信息的连贯提取,对图像噪声具有较强的抑制作用。本研究对水体目标的提取精度均达到了85%以上,实验结果精度优于基于光学影像的水体指数法,整个流程需要很少的人工经验参与,具有自动化程度强、检测精度高的优势。