陆勍 作品数:5 被引量:15 H指数:2 供职机构: 华东理工大学理学院物理系 更多>> 发文基金: 中央高校基本科研业务费专项资金 国家自然科学基金 更多>> 相关领域: 电子电信 更多>>
双电子传输层对有机发光二极管效率及其衰减的改善 被引量:7 2015年 采用Bphen和BCP制成双电子传输层(Double electron transport layers,DETLs)的有机发光二极管器件,与Bphen单独作ETL的器件相比,DETLs器件具有较小的空穴漏电流,效率提升10%。与BCP独自作ETL的器件相比,更多的电子注入使DETLs器件的效率在50~600 m A/cm2的电流范围内没有衰减。BCP作ETL的器件的效率从50 m A/cm2时的2.5 cd/A衰减至300 m A/cm2的2.1 cd/A,衰减了16%。Cs2CO3∶BCP独自作ETL的器件效率在50~300 m A/cm2的电流范围内衰减了30%,而Bphen/Cs2CO3∶BCP作DETLs的器件效率在50~600 m A/cm2的电流范围内衰减幅度为0,原因是Bphen阻挡了Cs原子扩散至发光层。 陆勍 陈炳月 杨魏强 张彤蕾 吕昭月关键词:发光效率 电子传输层 泄漏电流 Li_(2)CO_(3)电子注入层改善有机发光二极管性能的研究 2021年 常规有机发光二极管发光层中载流子浓度的不平衡,导致器件发光亮度、效率等性能不能达到最优.为了改善电子的注入和传输,采用Li_(2)CO_(3)作为电子注入层,并将其掺入4,7-二苯基-1,10菲啰啉(Bphen)电子传输材料中,研究电子注入和传输能力的变化及其对器件发光性能的影响.结果表明:Li_(2)CO_(3)作为有效的电子注入层,使器件的驱动电压降低1.0 V,发光亮度提高3倍,电流效率提高1倍.Li_(2)CO_(3)掺杂Bphen能进一步改善电子传输性能,提高发光层中的电子浓度,进而改善发光亮度和效率. 吕昭月 谢海芬 牟海川 张彤蕾 陆勍关键词:电子注入 载流子平衡 有机发光二极管 激基复合物给体作间隔层对激子复合区域的调节 被引量:2 2017年 为研究激基复合物器件激子复合区域的变化,在TPD/BPhen界面可形成激基复合物发光的基础上,以Ir(pq)2(acac)为探测层,制备器件ITO/Mo O_3(2.5 nm)/TPD((40-x)nm)/Ir(pq)2(acac)(0.5 nm)/TPD(x,x=0,3,6,10 nm)/BPhen(40 nm)/Cs2CO_3/Al,其中靠近BPhen的TPD称之为间隔层。电致发光光谱表明,该组器件的激子复合区域主要位于Ir(pq)2(acac)薄层和TPD/BPhen界面,分别发射595 nm和478 nm的光。随着TPD间隔层厚度的增加和电压的升高,发光区域向激基复合物区域(TPD/BPhen界面)移动,即更多的电子和空穴在TPD/BPhen界面形成激基复合物发光,Ir(pq)2(acac)发光减弱。当间隔层厚度由0 nm增至10nm时,6 V电压下的Ir(pq)2(acac)和激基复合物发光强度的比值由44降至1.5。对于间隔层厚度为6 nm的器件,Ir(pq)2(acac)和激基复合物发光强度的比值由6 V时的2.8降至10 V时的1.0。由此可见,激基复合物给体作间隔层能有效调节激子复合区域。 高浩锋 方圣欢 张叶峰 陆勍 吕昭月关键词:间隔层 激基复合物 TPD NPB和TPBi作为间隔层调控OLED激子复合区域 2017年 以ITO/MoO_3/NPB/Ir(ppy)_3/TPBi/Cs_2CO_3/Al器件为基础,采用NPB和TPBi作为间隔层(spacer)制备了器件ITO/MoO_3/NPB/Ir(ppy)_3/NPB(spacer)/TPBi/Cs_2CO_3/Al和ITO/MoO_3/NPB/TPBi(spacer)/Ir(ppy)_3/TPBi/Cs_2CO_3/Al,并通过调节间隔层厚度、分析器件的电致发光(EL)光谱,研究其对激子复合区域的调控。实验结果表明,所有器件的激子复合区域均位于NPB和Ir(ppy)_3,且复合区域随电压的增大和间隔层的增厚向NPB移动。NPB(spacer)的厚从0nm增至10nm,色坐标均匀变化,总变化值Δ(x,y)<(0.02,0.10);而TPBi(spacer)对应的色坐标变化量Δ(x,y)<(0.04,0.20),厚≤6nm时,光谱变化较小(即调节幅度较小),而10nm时光谱变化较大。这表明,通过调节间隔层材料或者厚度,就能简单、方便地调控激子复合区域,为不同复合区域发光强度的粗调/微调和白光器件的设计提供依据。 曾慧慧 计之皓 朱唯一 陆勍 吕昭月关键词:间隔层 NPB 利用Cs_2CO_3和Cs_2CO_3:BPhen改善OLED的光电性能 被引量:7 2015年 碳酸铯(Cs2CO3)是优秀的电子注入材料,本文通过器件ITO/MoO3(3nm)/NPB(40nm)/C545T:Alq3(99∶1,30nm)/Alq3(30nm)/Cs2CO3(xnm)/Al(100nm)优化了Cs2CO3作为电子注入层(EIL)的厚度。Cs2CO3作为EIL,提高了器件的电子注入能力,使更多的电子得以与空穴在发光层复合发光。实验结果表明,Cs2CO3作为EIL的优化厚度为1.5nm时,对应器件的效率是不含Cs2CO3的3倍以上。在Cs2CO3作为EIL的基础上,研究器件结构为ITO/NPB(40nm)/Alq3(45nm)/Cs2CO3:Bphen(0%,5%,10%,15nm)/Cs2CO3(1.5nm)/Al(100nm)时不同浓度的Cs2CO3掺杂电子传输层Bphen(Cs2CO3:Bphen)对器件性能的影响。结果表明,Cs2CO3掺杂浓度较低时(5%)能进一步改善器件的电子传输和注入能力,进而提高器件的发光效率;而掺杂浓度较高时(10%),由于Cs扩散严重,形成淬灭中心,使得发光效率衰减严重。 杨魏强 张彤蕾 陆勍 陈炳月 吕昭月关键词:掺杂