Walking is the basic skill of a legged robot, and one of the promising ways to improve the walking performance and its adaptation to environment changes is to let the robot learn its walking by itself. Currently, most of the walking learning methods are based on robot vision system or some external sensing equipment to estimate the walking performance of certain walking parameters, and therefore are usually only applicable under laboratory condition, where environment can be pre-defined. Inspired by the rhythmic swing movement during walking of legged animals and the behavior of their adjusting their walking gait on different walking surfaces, a concept of walking rhythmic pattern(WRP) is proposed to evaluate the walking specialty of legged robot, which is just based on the walking dynamics of the robot. Based on the onboard acceleration sensor data, a method to calculate WRP using power spectrum in frequency domain and diverse smooth filters is also presented. Since the evaluation of WRP is only based on the walking dynamics data of the robot's body, the proposed method doesn't require prior knowledge of environment and thus can be applied in unknown environment. A gait learning approach of legged robots based on WRP and evolution algorithm(EA) is introduced. By using the proposed approach, a quadruped robot can learn its locomotion by its onboard sensing in an unknown environment, where the robot has no prior knowledge about this place. The experimental result proves proportional relationship exits between WRP match score and walking performance of legged robot, which can be used to evaluate the walking performance in walking optimization under unknown environment.
More and more biological evidences have been found that neural networks in the spinal cord, referred to as "central pattern generators" (CPGs), govern locomotion. CPGs are capable of producing rhythmic movements, such as swimming, flying, and walking, even when isolated from the brain and sensory inputs. If we could build up any models that have similar functions as CPGs, it will be much easier to design better locomotion for robots. In this paper, a self-training environment is designed and through genetic algorithm (GA), walking trajectories for every foot of AIBO are generated at first. With this acquired walking pattern, AIBO gets its fastest locomotion speed. Then, this walking pattern is taken as a reference to build CPGs with Hopf oscillators. By changing corresponding parameters, the frequencies and the amplitudes of CPGs' outputs can be adjusted online. The limit cycle behavior of Hopf oscillators ensures the online adjustment and the walking stability against perturbation as well. This property suggests a strong adaptive capacity to real environments for robots. At last, simulations are carried on in Webots and verify the proposed method.