The via interconnects are key components in ultra-large scale integrated circuits (ULSI). This paper deals with a new method to create single-walled carbon nanotubes (SWNTs) via interconnects using alternating dielectrophoresis (DEP). Carbon nanotubes are vertically assembled in the microscale via-holes successfully at room temperature under ambient condition. The electrical evaluation of the SWNT vias reveals that our DEP assembly technique is highly reliable and the success rate of assembly can be as high as 90%. We also propose and test possible approaches to reducing the contact resistance between CNT vias and metal electrodes.
Nitrogen plasma passivation (NPP) on (111) germanium (Ge) was studied in terms of the interface trap density, roughness, and interfacial layer thickness using plasma-enhanced chemical vapor deposition (PECVD). The results show that NPP not only reduces the interface states, but also improves the surface roughness of Ge, which is beneficial for suppressing the channel scattering at both low and high field regions of Ge MOSFETs. However, the interracial layer thickness is also increased by the NPP treatment, which will impact the equivalent oxide thickness (EOT) scaling and thus degrade the device performance gain from the improvement of the surface morphology and the interface passivation. To obtain better device performance of Ge MOSFETs, suppressing the interfacial layer regrowth as well as a trade-off with reducing the interface states and roughness should be considered carefully when using the NPP process.
An extensive and complete experimental investigation with a full layout design of the channel direction was carried out for the first time to clarify the orientation dependence of germanium p-channel metal-oxide-semiconductor field-effect transistors (PMOSFETs). By comparison of gate trans-conductance, drive current, and hole mobility, we found that the performance trend with the substrate orientation for Ge PMOSFET is (110)〉(111) ~ (100), and the best channel direction is (110)/[110]. Moreover, the (110) device performance was found to be easily degraded as the channel direction got off from the [ 110] orientation, while (100) and (111) devices exhibited less channel orientation dependence. This experimental result shows good matching with the simulation reports to give a credible and significant guidance for Ge PMOSFET design.