The herbal drink “Attoté” has been widely used in the Abidjan district to treat a number of illnesses, notably erectile dysfunction. Despite the popularity of its therapeutic effects, very few studies have been carried out on its effects on the health of users. The aim of this study was to identify the constituents contained in the phytomedicinal product and to assess their potential adverse effects in vivo. Phytochemical screening was conducted to identify the bioactive molecules in “Attoté” and to evaluate its hepatic effects in vivo. Forty (40) Wistar rats, randomly divided into 4 groups, with 10 animals per group (5 males and 5 females) were used to study potential hepatotoxic effects. Group 1 animals (control group) received distilled water. Batches I, II and III received by gavage a volume of Attoté extract corresponding to 1 ml/100 g body weight at 200 mg/kg, 400 mg/kg and 800 mg/kg, respectively. Attoté extract was administered daily at the same time for 28 days, and serum was collected every two weeks to assess hepatic biochemical markers by spectrophotometry using a Cobas C311® HITACHI biochemistry system. After one month of study, the rats were euthanized by ether overdose and the livers were harvested for morphological and histopathological analysis. Phytochemical screening revealed the presence of alkaloids, polyphenols, leucoanthocyanes, anthraquinones and quinones. Hepatic biochemical and hematological parameters such as red globular, hemoglobin, alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), alkaline phosphatase (ALPs) and gamma glutamyl transferase (GGT) showed no significant change (p > 0.05) in the treated rat group compared with controls. However, these variations were moderate and transient, with values remaining almost within their standard limits. Microscopic observations of liver tissue sections from treated rats showed no liver damage or dysfunction. This study merits further investigation, with a view to gaining a better understanding of the cytotoxic me
Chemotherapy-induced toxicity(CIT)remains a major concern in cancer patients undergoing chemotherapy.New approaches to ameliorate the side effects of chemotherapy are urgently needed.Recently,the nutritional value of citrus fruits has attracted wide attention.Hesperidin and its aglycone hesperetin are the main active components in citrus fruits.Hesperidin and hesperetin have a wide range of pharmacological activities,including antioxidant and anti-inflammatory properties.This review aims to provide insights into the potential application of citrus flavonoids in CIT and summarize the underlying mechanisms of hesperidin and hesperetin in alleviating CIT.We have collected and collated relevant scientific articles on hesperidin and hesperetin and their treatment of CIT from different scientific databases.Hesperidin and its glycosides can reduce the toxicity of chemotherapeutic drugs,and their therapeutic effects are mainly through anti-inflammatory and antioxidant effects.At present,modern medical treatment is the main treatment method for CIT,but hesperidin,as an extract of food and medicinal materials,can greatly alleviate CIT.While killing tumor cells,chemotherapeutic drugs also damage normal cells leading to toxic effect on various organs.The pathological mechanism of CIT has not been fully elucidated,but current evidences indicate that cellular stress plays a key role.The citrus flavonoids hesperidin and hesperetin have the protective effect against CIT,highlighting its potential as an adjuvant in chemotherapy regimens.Hesperidin may also have synergistic anti-tumor activity with chemotherapeutic agents.We believe that more functional foods and anti-CIT drugs based on natural foods will be developed.
Background:Inhalation exposure is the gold standard when assessing pulmonary tox-icity.However,it typically requires substantial amounts of test material.Intratracheal instillation is an alternative administration technique,where the test substance is suspended in a liquid vehicle and deposited into the lung via the trachea.Instillation requires minimal test material,delivers an exact dose deep into the lung,and is less labor-intensive than inhalation exposures.However,one shortcoming is that the pro-cedure may induce short-term inflammation.To minimize this,we tested different modifications of the technique to identify the potential for refinement.Methods:First,we tested whether previous findings of increased inflammation could be confirmed.Next,we tested whether instillation with a disposable 1 mL syringe with ball-tipped steel-needle(Disposable-syringe/steel-needle)induced less inflammation than the use of our standard set-up,a 250μL reusable glass syringe with a disposable plastic catheter(Glass-syringe/plastic-catheter).Finally,we tested if access to pelleted and liquid feed prior to instillation affected inflammation.We evaluated inflammation by neutrophil numbers in bronchoalveolar fluid 24 h post-exposure.Results:Vehicle-instilled mice showed a small increase in neutrophil numbers com-pared to untreated mice.Neutrophil numbers were slightly elevated in the groups in-stilled with Disposable-syringe/steel-needle;an interaction with feed type indicated that the increase in neutrophils was more pronounced in combination with feed pel-lets compared to liquid feed.We found no difference between the feed types when using the Glass-syringe/plastic-catheter combination.Conclusion:The Glass-syringe/plastic-catheter combination induced the least exposure-related inflammation,confirming this as a preferred instillation procedure.
Dissolved black carbon(DBC)plays a crucial role in the migration and bioavailability of iron in water.However,the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied.Here,the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied.It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances.The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light,respectively.The concentration of phenolic hydroxyl groups increased from 10.0~57.5 mmol/gC to 6.6~65.2 mmol/gC,and the concentration of carboxyl groups increased from49.7~97.5 mmol/gC to 62.1~113.3 mmol/gC.Then the impacts of DBC on pyrite dissolution andmicroalgae growth were also investigated.The complexing Fe^(3+)was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution.Due to complexing between iron ion and DBC,the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions.Fe-DBC complexations in solution significantly promoted microalga growth,which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis.The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.
Chaochao LaiJuhong ZhanQiuyun ChaiChanglu WangXiaoxia YangHuan HeBin HuangXuejun Pan