The geometric and electronic structures of several possible adsorption configurations of the pyrazine(C4H4N2)molecule covalently attached to Si(100)surface,which is of vital importance in fabricating functional nano-devices,have been investigated using X-ray spectroscopies.The Carbon K-shell(1s)X-ray photoelectron spectroscopy(XPS)and near-edge X-ray absorption fine structure(NEXAFS)spectroscopy of predicted adsorbed structures have been simulated by density functional theory with cluster model calculations.Both XPS and NEXAFS spectra demonstrate the structural dependence on different adsorption configurations.In contrast to the XPS spectra,it is found that the NEXAFS spectra exhibiting conspicuous dependence on the structures of all the studied pyrazine/Si(100)systems can be well utilized for structural identification.In addition,according to the classification of carbon atoms,the spectral components of carbon atoms in different chemical environments have been investigated in the NEXAFS spectra as well.
Xiu-neng SongHuan-yu JiJuan LinRuo-yu WangYong MaChuan-kui Wang
Since the discovery of carbon nanotubes (CNT), this material has been recognized as an attractive catalyst support. CNT must be functionalized before use as a catalyst support and typically this involves oxidation. However, the functional group distribution on the CNT is very complex mixture of groups and varies with oxidation agent used. Here a simple acid-base titration is introduced to characterize the oxygen functionalized CNT. By comparing characterization with near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) for both at the C and O K-edges, it can be demonstrated that potentiometric proton titration can be a fast and quantitative analysis for Brnsted acid functional groups on CNT.
The molecular orientation of perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA) multilayers adsorbed on Au (111) surface has been investigated using angular dependent O K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The significant angular dependence of important resonant structures (π* and σ*) reveals that PTCDA molecules adopt an ordered geometry on the substrate surface. The average tilt angle of the PTCDA molecular planes is 27°±10° from the Au (111) surface.