李强
- 作品数:3 被引量:11H指数:2
- 供职机构:浙江大学电气工程学院更多>>
- 发文基金:国家自然科学基金浙江省自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 量子K最近邻算法被引量:4
- 2008年
- 为减少经典K最近邻算法的时间复杂度,提出了量子K最近邻算法(QKNN)。介绍了QKNN算法的构造步骤,然后为减少量子计数子程序的运行时间,进一步将固定的K值修改为可变的k,形成改进的k可变的量子最近邻算法(QkvNN)。为弥补由于最近邻个数K变化带来的分类错误率上升的影响,在Boosting算法框架下,用三个由QkvNN算法训练的弱分类器,去构造了一个强分类器,从而提高单独运行QkvNN的分类精度。在此算法中,由于利用了量子计算的强大能力,使得经典K最近邻算法的时间复杂度从O(N)减小为O(N)。
- 李强蒋静坪
- 关键词:量子计算量子搜索模式识别
- 具有虚拟领导的Flocking聚类算法被引量:1
- 2009年
- 该文提出一种改进的带虚拟领导的Flocking模型,并基于此模型开发了一种数据聚类算法。在此算法中,数据集中的数据点被考虑为可以在空间中移动的Agent,并且根据改进的模型,生成有权无向图。然后从数据集中选定一组虚拟领导,每个数据点与其中γ个虚拟领导建立连接。所有与这个数据点有连接的邻居,都通过一个势函数产生场,对这个数据点进行作用,此数据点将沿着所有场矢量叠加的方向移动一段距离。算法中,虚拟领导的加入有效减少了数据点,特别是邻居较少的数据点向某个中心收敛的时间。在所有数据点不断受到作用而移动的过程中,同类的数据点就会逐渐地聚集到一起,而不同类的数据点则相互远离,最后自动形成聚类。此算法的实验结果表明,数据点能合理有效地被聚类,并且算法具有较快的收敛速度,同时,与其他算法对比也验证了此算法的有效性。
- 李强何衍蒋静坪
- 关键词:数据聚类无监督学习
- 一种基于随机游动的聚类算法被引量:6
- 2009年
- 该文提出一种改进的随机游动模型,并在此模型的基础上,发展了一种数据聚类算法。在此算法中,数据集中的样本点根据改进的随机游动模型,生成有权无向图G(V,E,d),其中每个样本点对应图G的一个顶点,并且假设每个顶点为可以在空间中移动的Agent。随后计算每个顶点向其邻集中顶点转移的概率,在随机选定邻集中的一个顶点作为转移方向后,移动一个单位距离。在所有样本点不断随机游动的过程中,同类的样本点就会逐渐的聚集到一起,而不同类的样本点相互远离,最后使得聚类自动形成。实验结果表明,基于随机游动的聚类算法能使样本点合理有效地被聚类,同时,与其他算法对比也说明了此算法的有效性。
- 李强何衍蒋静坪
- 关键词:数据聚类无监督学习