郑金秋
- 作品数:1 被引量:26H指数:1
- 供职机构:武汉大学计算机学院更多>>
- 发文基金:中央高校基本科研业务费专项资金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于密度峰值优化的K-means文本聚类算法被引量:26
- 2017年
- 传统K-means算法中初始质心选定的随机性可能使算法陷入局部最优解,使聚类结果不够准确。改进初始质心的选择算法,为各样本点引入局部密度指标,根据其局部密度分布情况,选取处于密度峰值的点作为初始质心,得到稳定的离收敛质心很近的初始质心,减少算法迭代次数,提高运行效率,降低陷入局部最优的概率,显著提高聚类准确性。实验结果表明,与几种已有算法相比,该算法在文本聚类中有明显优势。
- 田诗宵丁立新郑金秋
- 关键词:文本聚类K均值向量化