为了对列车牵引变压器悬挂刚度进行优化设计,采用了响应面法。首先用车体及牵引变压器的有限元模型进行谐响应分析,取得车体与牵引变压器之间的振级落差。通过方差分析筛选出对振级落差影响显著的悬挂刚度参数,并构造了悬挂刚度与振级落差的二次响应面模型。最后,以振级落差最大为目标进行优化设计。结果表明,前、中、后三个悬挂位置的垂向刚度和后部横向刚度对振级落差影响显著。当前、中、后垂向刚度分别取2.05×106N/m、2.24×106N/m、7.68×106N/m,后部横向刚度取4.17×106N/m,车体与牵引变压器间的振级落差最大。该条件下振级落差的数学模型预测值为100.23 d B,仿真试验值为98.21 d B,两者基本一致,验证了响应面法在列车牵引变压器悬挂刚度优化设计中应用的可行性。
为改善振动条件下螺纹紧固件抵抗松动能力,在紧固件横向振动试验装置上,测试了微粒子喷丸未处理及处理镀锌紧固件的抗松动能力,使用扫描电镜观察测量了试验前、后螺纹面磨损形貌和尺寸,建立了考虑螺纹面磨损深度的紧固件刚度模型,利用该模型计算分析了磨损深度改变对预紧力的影响.结果表明:未喷丸紧固件预紧力耐久极限为2.8 k N,喷丸紧固件为2.0 k N,未喷丸紧固件抗松动能力低于喷丸紧固件,未喷丸紧固件螺纹面发生严重磨损,喷丸紧固件螺纹面磨损轻微;螺纹面磨损深度随着滑移距离的增加而增加,紧固件预紧力随着螺纹面磨损深度的增加先呈线性降低,随后降低速度逐渐加快.螺纹面磨损降低了紧固件抵抗松动的能力.