陈顺生
- 作品数:1 被引量:2H指数:1
- 供职机构:安徽理工大学计算机科学与工程学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于动态可调衰减滑动窗口的变速数据流聚类算法被引量:2
- 2015年
- 在数据流聚类算法中,滑动窗口技术可以及时淘汰历史元组、只关注近期元组,从而改善数据流的聚类效果。如果同时数据流流速无规律地随时间动态变化,原来单纯的滑动窗口技术在解决这类问题时存在缺陷,所以,在充分考虑了滑动窗口大小和数据流流速之间关系的前提下,提出了基于动态可调衰减滑动窗口的变速数据流聚类算法。该算法对历史元组和近期元组分别赋予一定的权重进行处理,然后依据数据流流速的不同函数改变窗口的大小,从而实现数据流的聚类。提出了该数据流聚类算法的数据结构——变异数据流聚类的数据结构。通过真实数据和模拟数据来构造动态变速数据流从而作为验证算法的原始数据。实验结果表明,与Clu Stream聚类算法相比,该方法具有较高的聚类质量、较小的内存开销和较少的聚类处理时间。
- 周华平陈顺生
- 关键词:聚类