朱新宁
- 作品数:2 被引量:11H指数:1
- 供职机构:东北石油大学计算机与通信工程学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 一种基于混合误差梯度下降算法的过程神经网络训练被引量:11
- 2014年
- 针对过程神经网络(PNN)单一训练算法自适应调整能力差、缺乏对学习性质有效控制的问题,提出一种梯度下降与牛顿迭代相结合的求解算法——混合误差梯度下降算法.在训练初始阶段,基于网络训练目标函数,采用梯度下降法进行迭代寻优,只需计算目标函数一阶导数数值公式,复杂度低且误差下降快;当梯度下降法学习效率降低时,引入牛顿迭代法,并将梯度下降法的训练结果作为初始参数代入目标函数,使问题转化为求解非线性方程组,不需要一维搜索而提高网络训练效率.通过学习效率分析自适应调节两种算法的切换,直至满足停机条件.将其应用于时变信号模式分类,实验结果表明,该算法较大地提高PNN训练效率.
- 许少华宋美玲许辰朱新宁
- 关键词:过程神经元网络牛顿迭代法梯度下降法
- 基于鱼群算法的异构数据库语义聚类的研究
- 2013年
- 数据库语义上的异构成为数据整合的重点和难点。针对该问题文章提出一种基于鱼群算法的异构数据库语义聚类算法。其思路是,首先对数据库属性信息进行向量化、矢量化,利用鱼群算法得到一个较优的聚类结果,再根据鱼群算法的结果使用模糊C-均值算法进行调整聚类。实例分析结果证明,该算法具有较高的聚类准确度。
- 朱新宁冯辉
- 关键词:鱼群算法异构数据库语义聚类语义异构