陶涛
- 作品数:2 被引量:8H指数:1
- 供职机构:昆明理工大学更多>>
- 发文基金:云南省科技计划项目国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 一种对数极坐标系下的尺度不变特征点提取器及其在图像匹配中的应用
- 当前国际上广泛使用的尺度不变特征变换(SIFT)算法及其改进算法在检测与描述特征点时基于平面直角坐标系下的高斯差分(DoG)函数,存在损失图像高频信息的缺陷,从而导致图像匹配时其性能随着图像变形的增加而出现急剧下降。针对...
- 陶涛
- 关键词:计算机视觉图像匹配描述符
- 文献传递
- 对数极坐标系下尺度不变特征点的检测与描述被引量:8
- 2015年
- 目的当前国际流行的SIFT算法及其改进算法在检测与描述特征点时基于高斯差分函数,存在损失图像高频信息的缺陷,从而导致图像匹配时其性能随着图像变形的增加而出现急剧下降。针对SIFT算法及其改进算法的这一缺陷,本研究提出了一种新的无图像信息损失的、在对数极坐标系下的尺度不变特征点检测与描述算法。方法本研究提出的尺度不变特征点检测与描述算法首先将直角坐标系下以采样点为中心的圆形图块转换为对数极坐标系下的矩形图块,并以此矩形图块为基础对采样点进行特征点检测与描述符提取;该算法使用固定宽度的窗口在采样点的对数极坐标径向梯度图像的logtr轴上进行移动以判断该点是否为特征点并计算该点的特征尺度,并在具有局部极大窗口响应的特征尺度位置处提取特征点的描述符。该算法的描述符基于对数极坐标系下的矩形图块的灰度梯度的幅值与角度,是一个192维向量,并具有对于尺度、旋转、光照等变化的不变性。结果本研究采用INRIA数据组和Mikolajczyk提出的匹配性能指标对SIFT算法、SURF算法和提出的尺度不变特征点检测与描述算法进行比较。与SIFT算法和SURF算法相比,提出的尺度不变特征点检测与描述算法在对应点数、重复率、正确匹配点数和匹配率等方面均具有一定优势。结论提出了一种基于对数极坐标系的图像匹配算法,即将直角坐标系下以采样点为中心的圆形图块转换为对数极坐标系下的矩形图块,这样在特征点的检测过程中,可以有效规避SIFT算法因为采用DoG函数而造成的高频信息损失;在描述符提取过程中,对数极坐标系可以有效地减少图像的变化量,从而提高了匹配性能。
- 陶涛张云
- 关键词:计算机视觉图像匹配描述符