针对带相关观测噪声和带不同未知观测函数的多传感器离散系统,在已有的融合算法基础上提出了基于Bayes估计的加权最小二乘(Bayes estimation weighted least squares,BYEWLS)分布式融合Kalman滤波算法。该方法充分利用未知参数的验前信息,以风险函数为评价指标,证明了BYEWLS融合算法优于WLS融合算法,针对BYEWLS融合算法是有偏估计,提出了在线消除偏差的方法。分布式融合算法减少了计算负担,提高了融合精度,便于实时应用。最后通过仿真例子验证了该方法的有效性和理论分析的正确性。