针对传统分割算法难以实现高分辨率多光谱图像分割的问题,本文提出一种利用高斯混合模型的多光谱图像模糊聚类分割算法。该算法采用高斯混合模型定义像素对类属的非相似性测度,由于该算法具有高精度拟合数据统计分布能力,故可以有效剔除噪声对分割结果的影响。同时,引入隐马尔科夫随机场(Hidden Markov Random Field,HMRF)定义邻域作用的先验概率,并将其作为各高斯分量权值以及KL(Kullback-Leibler)信息中控制聚类尺度的参数,从而增强了算法对复杂场景遥感图像的鲁棒性,进一步提高了算法的分割精度。对模拟图像和高分辨多光谱图像分割结果进行了定性定量分析。实验结果表明:模拟图像的总精度达96.8%以上。这验证了本文算法在分割高分辨率多光谱图像时具有保留细节信息的能力,而且也证实了算法的有效性和可行性。该算法能够实现高分辨率多光谱图像的精确分割。
目的目前,点云、栅格格网及不规则三角网等建筑物检测中常用的离散机载激光雷达(LIDAR)点云数据表达方式存在模型表达复杂、算法开发困难、结果表达不准确及难以表达多返回数据等缺点。为此,针对LIDAR点云体元结构模型构建及在此基础上的建筑物检测展开研究,提出一种基于体元的建筑物检测算法。方法首先将点云数据规则化为二值(即1、0值,分别表示体元中是否包含有激光点)3D体元结构。然后利用3D滤波算法将上述体元结构中表征数据点的体元分类为地面和非地面体元。最后,依据建筑物边缘的接近直线、跳变特性从非地面体元中搜寻建筑物边缘作为种子体元进而标记与其3D连通的非地面体元集合为建筑物体元。结果实验基于ISPRS(international society for photogrammetry and remote sensing)提供的包含了不同的建筑物类型的城区LIDAR点云数据测试了"邻域尺度"参数的敏感性及提出算法的精度。定量评价的结果表明:56邻域为最佳邻域尺度;建筑物的检测质量可达到95%以上——平均完整度可达到95.61%、平均正确率可达95.97%。定性评价的结果表明:对大型、密集、不规则形状、高低混合及其他屋顶类型比较特殊的复杂建筑物均可成功检测。结论本文提出的建筑物检测算法采用基于体元空间邻域关系的搜索标记方式,可有效实现对各类建筑目标特别是城市建筑目标的检测,检测结果易于建模3D建筑物模型。