滚动轴承退化状态识别的关键在于特征提取和模式识别,局部特征尺度分解(local characteristic-scale decomposition,LCD)方法是一种新的时频分析方法,非常适用于滚动轴承振动信号的特征提取。基于变量预测模型的模式识别(Variable predictive model based class discriminate,VPMCD)方法是一种利用特征值之间的相互关系进行分类的模式识别方法,可以用于滚动轴承的退化状态识别。将LCD、VPMCD和高斯混合模型(Gaussain mixture model,GMM)相结合,提出了基于LCD和GMM-VPMCD混合模型的滚动轴承退化状态识别方法,首先对滚动轴承全寿命数据进行LCD分解并提取分量的特征值,然后利用GMM对全寿命数据的特征值进行聚类,将全寿命数据在时域上分成若干个退化状态,最后建立VPMCD模型并对测试数据进行分类,从而实现滚动轴承的退化状态识别。实验数据的分析结果表明,基于LCD的GMM-VPMCD混合模型可以有效实现滚动轴承的退化状态识别。