张宇
- 作品数:1 被引量:6H指数:1
- 供职机构:河北大学电子信息工程学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于NSST域的自适应区域和SCM相结合的多聚焦图像融合被引量:6
- 2017年
- 为了提高多聚焦图像的融合效果,结合多源图像之间的共享相似性,提出了一种基于非下采样Shearlet变换(Nonsubsampled Shearlet Transform,NSST)域的自适应区域与脉冲发放皮层模型(Spiking Cortical Model,SCM)结合的新型图像融合算法。首先用NSST分解源图像,然后计算边缘能量(Energy Of Edge,EOE),在自适应区域用投票加权法融合低频系数,高频系数由边缘能量作为输入的SCM点火图融合,最后通过逆NSST获得该融合图像。该算法既可以很好地保持源图像的信息,又可以抑制在变换域因非线性运算产生的像素失真。实验结果表明,该方法优于最新的变换域和脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)融合方法。
- 赵杰温馨刘帅奇张宇
- 关键词:图像融合SCM