沈甜
- 作品数:2 被引量:51H指数:2
- 供职机构:江苏大学电气信息工程学院更多>>
- 发文基金:江苏省高校优势学科建设工程资助项目国家教育部博士点基金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 苹果采摘机器人夜间图像降噪算法被引量:18
- 2015年
- 苹果采摘机器人图像处理系统采集到的实时夜间图像含有大量的噪声,影响采摘效率。通过差影法对夜间图像进行噪声分析,判定其噪声类型为以高斯噪声为主,并伴有部分椒盐噪声的混合噪声。针对高斯噪声去除难题,将独立成分分析(independent component analysis,ICA)理论引入夜间图像降噪,并尝试采用粒子群优化算法(particle swarm optimization,PSO)对ICA进行优化,建立基于PSO优化的ICA降噪算法(PSO-ICA),以期最大限度地降低夜间图像的噪声污染。利用标准Lenna图像和自然光下的苹果图像,进行仿真试验,结果表明PSO-ICA方法降噪效果最为理想。然后对白炽灯、荧光灯、LED灯3种不同的人工光源下采集到10个样本点的夜间图像进行验证试验,结果表明,从视觉效果评价,在3种人工光源环境下,PSO-ICA降噪方法得到低噪图像均表现为噪点明显减少;从相对峰值信噪比(relative peak signal-to-noise ratio,RPSNR)看,在3种人工光源下的平均值,PSO-ICA得到的低噪图像,分别比原始图像、均值滤波降噪和ICA降噪得到的图像的相对峰值信噪比提高21.28%、12.41%、5.53%;从运行时间看,PSO-ICA方法较ICA方法的运行时间平均减少了49.60%。PSO-ICA方法用于夜间图像降噪有着独到的优势,为实现苹果采摘机器人的夜间作业打下坚实的基础。
- 贾伟宽赵德安阮承治沈甜陈玉姬伟
- 关键词:图像处理机器人
- 苹果采摘机器人快速跟踪识别重叠果实被引量:34
- 2015年
- 为解决采摘机器人在运动状态下对重叠果实的识别问题,减少采摘过程处理的时间,对重叠果实的快速跟踪识别进行了研究。首先,对采集到的第1幅图像进行分割并去噪,之后通过计算圆内的点到轮廓边缘最小距离的极大值确定圆心的位置,计算圆心到轮廓边缘距离的最小值确定半径,通过圆心与半径截取后续匹配的模板,经试验证明该算法能较准确地找到重叠果实的圆心与半径。然后,确定连续采集的10幅图像的圆心,根据每幅图像圆心的位置对机器人的运动路径进行拟合、预判、综合半径与预判路径确定下一次图像处理的范围。最后,采用快速归一化互相关匹配对重叠果实进行匹配识别。试验证明,经过改进后的算法匹配识别时间与原算法相比,在没有进行预判的情况下匹配识别的时间为0.185 s,经过预判之后,匹配时间为0.133 s,减少了28.1%,采摘机器人的实时性得到了提高,能够满足实际需求。该研究可为苹果等类球形重叠果实的动态识别提供参考。
- 赵德安沈甜陈玉贾伟宽
- 关键词:机器人果实图像处理图像匹配