2025年2月3日
星期一
|
欢迎来到鞍山市图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
李霞
作品数:
1
被引量:0
H指数:0
供职机构:
北京师范大学数学科学学院
更多>>
发文基金:
国家自然科学基金
更多>>
相关领域:
理学
更多>>
合作作者
李俊峰
北京师范大学数学科学学院
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
理学
主题
1篇
适定性
1篇
双周期
1篇
局部适定性
1篇
TSE
1篇
V-P
1篇
ETV
1篇
HVI
机构
1篇
北京师范大学
作者
1篇
李俊峰
1篇
李霞
传媒
1篇
中国科学:数...
年份
1篇
2014
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
双周期5阶Kadomtsev-Petviashvili Ⅱ方程的局部适定性
2014年
本文研究5阶双周期Kadomtsev-Petviashvili II(KP-II)方程的局部适定性.具体地,当正则指标s>-34时,本文获得双周期5阶KP-II问题在各向异性的Sobolev空间Hs,0(T×T)上的局部适定性.为此,本文充分挖掘KP波所特有的一些对称结构,详细讨论两个波在频率空间垂直方向上分离时相互作用的结果.本文发现,两个波在频率空间上只要不完全重合,就不会发生共振现象.本文的一个重要贡献在于引入一类与Galilie变换可交换的双线性算子,并获得该类双线性算子的L2有界估计.这些算子的引入可以充分理解KP波的相互作用机制.从而克服之前对Strichartz型估计的依赖,使本文能够很大程度上推进已知的结果.
李俊峰
李霞
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张