本文旨在通过功能磁共振成像(functional magnetic resonance imaging,fMRI)技术研究正常人进行长时数字记忆信息提取的神经基础。选取22名右利手志愿者进行长时数字记忆任务实验,采用组块设计,记忆任务与对照任务交替进行,同时利用Siemens 1.5T超导型磁共振仪进行fMRI成像,采用SPM99软件进行数据分析,脑功能区定位在Talairach坐标中显示。结果显示被试者在进行长时数字记忆提取任务时,激活最显著的皮层是左侧额中回(Brodmann分区9区,BA9区),另外左额叶内侧回、左额下回、右额下回、扣带回、左顶下小叶、左顶上小叶、右顶上小叶、右颞中回、左枕舌回、左枕中回、右中脑、小脑、右尾状核尾部等结构也有激活,各大脑皮层的激活均呈现明显的左侧半球优势。根据上述结果推论,长时数字记忆由以左侧大脑半球为优势的各脑区共同参与完成,其中左侧额叶外侧面可能是信息提取的重要结构,而其它脑叶及其之间的广泛联系可能在数字信息的加工、处理和存储中起重要作用。
采用细胞外记录方法研究小鼠下丘中央核(the central nucleus of the inferior colliculus,ICC)听觉神经元对不同频率纯音刺激反应的延时-幅度关系.对于同一个神经元,采用基于Pieron’s法则建立的一个新方程,可对所有单一频率下延时-幅度反应曲线进行很好的拟合,提示单一频率下延时-幅度反应曲线具有相似的曲度,而仅表现为同一坐标系下所处位置的差异.经标准化消除不同频率下延时-幅度反应曲线相对于神经元特征频率(characteristic frequency,CF)下延时-幅度反应曲线的位置差异后,所有曲线高度重合.ICC神经元对声刺激延时-幅度反应曲线曲度相似并可高度重合,反映了声音信号转化为生物电信号的物理法则.以神经元CF延时-幅度反应曲线为参照,不同频率下延时-幅度反应曲线横、纵轴趋于无限大时的纵、横坐标数值的差值(ΔL及ΔA)可用来描述其位置的相对差异.声音信号处理过程中,连接于同一神经元的神经纤维和突触可功能性地简化为单个"线路"(总和纤维的长度)和单个"接头"(总和突触的强度).在线路和接头上,分别完成信号的传输(transmission)和传导(transduction).因此,ΔL及ΔA可作为衡量一条声刺激激活通路功能性相对总和纤维长度及总和突触强度的指标.实验结果显示,对于不同的频率处理通路和不同的神经元其ΔL及ΔA不同,提示神经元不同的声反应是因声刺激激活的信号处理通路不同而造成的,而用于处理不同频率声刺激的通路也是不同的.