We study the geometries, stabilities, electronic and magnetic properties of (MgO)n (n=2-10) clusters doped with a single Mn atom using the density functional theory with the gener- alized gradient approximation. The optimized geometries show that the impurity Mn atom prefers to replace the Mg atom which has low coordination number in all the lowest-energy MnMgn-1On (n=2-10) structures. The stability analysis clearly represents that the average binding energies of the doped clusters are larger than those of the corresponding pure (MgO)n clusters. Maximum peaks of the second order energy differences are observed for MnMg~_1On clusters at n=6, 9, implying that these clusters exhibit higher stability than their neighboring clusters. In addition, all the Mn-doped Mg clusters exhibit high total magnetic moments with the exception of MnMgO2 which has 3.00μB. Their magnetic behavior is attributed to the impurity Mn atom, the charge transfer modes, and the size of MnMgn- 1On clusters.
Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the stability of the end rings of the three silica nanotubes gradually decreases with increase in temperature. The validity of the vibrational features of silica nanotubes is shown by the vibrational density of states. Infrared spectra on the silica nanotubes under different temperatures are investigated. A detailed assignment of each spectral peak to the corresponding vibrational mode of the three nanotubes has been addressed. The results are in good agreement with the other theoretical and experimental