利用溶剂引导的无序-有序相转变的方法制备了二噻吩并[3,2-b:2',3'-d]噻吩-2,5-二羧酸(A)和二噻吩并[2,3-b:3',2'-d]噻吩-2,5-二羧酸(B)的自组织薄膜.利用原子力显微镜(atomic force microscopy,AFM)研究了两种化合物分子在基底上的排列方式,发现化合物A分子在云母基底上以一定角度取向排列,而化合物B单分子层在云母基底上以"平卧"式排列.结合紫外可见(ultra violet-visible,UV-Vis)吸收光谱、荧光光谱和导电原子力显微镜(conductive atomic force microscopy,C-AFM)对化合物A和化合物B薄膜的光学性质以及微区电子传输行为进行了研究.结果表明,形成J-聚集体的化合物A与化合物B相比,其吸收峰值和发光峰位都发生较大红移,并且化合物A比化合物B的微区电导大三个数量级以上,在基底上的不同聚集结构和取向是导致两种分子微区电导巨大差异的主要原因.
利用溶剂引导相转变的方法制备了二噻吩并[3,2-b∶2',3'-d]噻吩-2-羧酸(DTTDA)自组织薄膜.利用原子力显微镜(Atomic Force Microscopy,AFM)、紫外可见(Ultra Violet-Visible,UV-Vis)吸收光谱、荧光光谱和导电原子力显微镜(Conductive Atomic Force Microscopy,C-AFM)对其成膜性能及光电子传输性能进行研究.研究结果表明:该化合物成膜性能较好,在成膜过程中分子间具有很强的相互作用,易形成紧密聚集的平整薄膜.由于该分子间易于产生较紧密的聚集,使得其具有较高的电子传输特性.因此,该化合物可望作为有机电致发光器件的候选材料.