Conventional techniques to control variations within one plate have been based on preset models and constant automatic position control (APC or pressure feedback automatic gauge control(PAGC).However.because of the rolling force prediction error in the preset models and of the inadequate response speed of dynamic system and of the eccentricity, etc.,the conventional method has not given satisfactory results, the statistics'variations within one plate are in range of 0.25-0.60 mm The authors have developed the techniques to control the variations, which are dynamic intelligent control of hydraulic screwdown system. synchronism control of hydraulic screwdown, eccentricity control method by rotary encoder and the curve of modulus of mill measured automatically, etc., The techniques were fully and successfully industrialized in The Plate Mill of Maanshan Iron and Steel Company and good results that variations are in range of 0.08-0.15min hare been obtained in that mill.
Aim To improve the causal diagnosis method presented by Bandekar and propose a new method of finding the root fault order according to the fault possibility by means of numerical calculation. Methods Based on the causal graph, by utilization of fuzzified threshold value and fuzzy discrimination matrix, a kind of fuzzy causal diagnosis method was given and the fault possibility of each elements in the root fault candidate set (RFCS) was obtained. Results and Conclusion The order of each element in the RFCS can be obtained by the fault possibility, which makes the location of fault much easier. The diagnosis speed of this method is quite high, and by means of the fuzzified threshold value and fuzzy discrimination matrix, the result is more robust to noises and bad parameter's choice.