The rice husk ash ( RHA) and silica ( Si02) nanoparticles are prepared from rice husk charcoal (RHC) by the methods of ventilated calcining and chemical precipitation, respectively, to remove the residual carbon which is harmful to cement composites. The structures and morphologies of these products are investigated by the Fourier transform infrared spectroscopy, X-ray diffraction, scanning/ transmission electron microscopy and N2 adsorption- desorption analyzer. The results show that the as-produced RHA and Si02 nanoparticles exist in amorphous phase without residual carbon, and exhibit porous structures with specific surface areas of 170.19 and 248. 67 m2 /g , respectively. The micro particles of RHA are aggregated by numerous loosely packed Si02 gel particles with the diameter of 50 to 100 nm. The Si02 nanoparticles are well dispersed with the average size of about 30 nm. Both the RHA and Si02 nanoparticles can significantly reduce the conductivity of saturated Ca(OH)2 solution and increase the early strength of the cement composites. They also exhibit high pozzolanic activity, indicating that they can be used as ecological nano mineral admixtures.
The development of a high performance wideband radio frequency (RF) transceiver used in the next generation mobile communication system is presented. The developed RF transceiver operates in the 6 to 6.3 GHz band and the channel bandwidth is up to 100 MHz. It operates in the time division duplex (TDD) mode and supports the multiple-input multipleoutput (MIMO) technique for the international mobile telecommunications (IMT)-advanced systems. The classical superheterodyne scheme is employed to achieve optimal performance. Design issues of the essential components such as low noise amplifier, power amplifier and local oscillators are described in detail. Measurement results show that the maximum linear output power of the RF transceiver is above 23 dBm, and the gain and noise figure of the low noise amplifier is around 24 dB and below 1 dB, respectively. Furthermore, the error vector magnitude (EVM) measurement shows that the performance of the developed RF transceiver is well beyond the requirements of the long term evolution (LTE)-advanced system. With up to 8 x 8 MIMO configuration, the RF transceiver supports more than a 1 Gbit/s data rate in field tests.