本文在椭球等高分布假定下,讨论了二次型X′AX(A为对称阵)的非中心Cochran定理。主要结果如下: 若X~EC_n(μ,L_n;g),g(x)>0为x的连续函数,且X有有限的2n阶矩。A_i,i=1,2,…,m为n×n对称阵。A=∑A_i,λ_1,…,λ_k互不相同且非零。考虑下面的条件: (a) X′A_iX■sum from j=1 to k λ_jy_(ij),(y_(i1),…(y_(ik))′~Gχ~2(n_(i1),…,n_(ik);δ_(i1)~2,…,δ_(ik)~2;g)j=1,…,m。 (b) (X′A_1X,…,X′A_mX)■(sum from j=1 to k λ_jz_j…,sum from j=(m-1)k+1 to mk λ_(j-(m-1)k)z_j)(z_1…,z_(mk))′~Gχ~2(n_(11),n_(1k),n_(21)…,n_(mk);δ_(11)~2,…δ_(1k)~2,δ_(21)~2,…,δ_(mk)~2;g) (c) X′AX(?)sum from j=1 to k λ_jy_j,(y_1,…,y_k)′~Gχ(n_1,…,n_k;δ_1~2,…,δ_k^2;g) (d) r(A)=∑r(A_i)=∑∑r(A_iE_j),A=∑λ_jE_j,E_j^2=E_j,E_jE_(j′)=0,j≠j′=1,…,k, (e) k个等式n_j=∑n_(ij)中至少有k-1个成立。则 (Ⅰ) (a),(b)■(c),(d),(e), (Ⅱ) (a),(c),(e)■(b),(d), (Ⅲ) (b),(c)■(a),(d),(c), (Ⅳ) (c),(d)■(a),(b),(c)。