CaTiO 3-Fex was characterized by X-ray diffractometry, scanning electron microscopy equipped with an energy dispersive spectrometry system, Fourier transform infrared spectra, and UV-visible spectra. Effects of Fe content on photocatalytic activity of CaTiO3-Fex were investigated through measuring photocatalytic degradation rate of methylene blue. The results show that chemical compositions of CaTiO3-Fex remained unchanged with increasing Fe content from 0 to 4.745%. However, the light absorption ability of CaTiO3-Fex exhibited a significant increase with increasing Fe content. Photocatalytic degradation of methylene blue over CaTiO3-Fex followed the first-order reaction kinetics. Based on changes of the concentration of methylene blue and its degradation kinetics, CaTiO3-Fe0.474% has shown to have optimal photocatalytic activity. The degradation rate of methylene blue over CaTiO3-Fe0.474% was almost 100% under UV-visible light irradiation for 3.0 h. The kobs of methylene blue over CaTiO 3-Fe0.474% was 1.33 h-1 and was 7 times that over CaTiO3-Fe0.
UV-visible light induced photocatalytic degradation of methylene blue (MB) over Fe-doped diopside was investigated. The structure, composition, morphology and absorption property of UV-visible light of as-prepared samples were characterized using XRD, SEM, FTIR and UV-vis DRS. The experimental results show that doping Fe3+ induced the formation of some new species in diopside, and promoted light adsorption property of diopside in UV-visible region. Photochemical reactivity of Fe-doped diopside obviously depended on the content of doping Fe3+. The diopside with 1.848% Fe3+ exhibited the superior photocatalytic activity with 95% degradation of MB under UV-visible light for 3 h. The photocatalytic degradation kinetics of MB over all samples showed the first-order reaction nature.