占必超
- 作品数:9 被引量:114H指数:5
- 供职机构:南京航空航天大学电子信息工程学院更多>>
- 发文基金:国家自然科学基金计算机软件新技术国家重点实验室开放基金中国航空科学基金更多>>
- 相关领域:电子电信自动化与计算机技术更多>>
- 基于混沌粒子群优化的倒数熵阈值选取方法被引量:10
- 2010年
- 基于信息熵的方法是一类重要的阈值选取方法,但现有的最大熵方法存在无定义值问题。为此,提出了基于倒数熵的阈值选取方法。首先给出了倒数熵的定义及一维阈值选取方法,导出了基于二维直方图区域直分及区域斜分的倒数熵阈值选取算法公式;然后考虑到二维倒数熵分割运算量较大,提出利用混沌小生境粒子群算法来寻找最优阈值,避免了算法早熟,提高了搜索精度和算法效率。实验结果表明:二维倒数熵阈值选取的斜分方法在抗噪性和运算时间上优于直分方法;而与基于粒子群优化的二维最大熵方法相比,本文提出的基于混沌小生境粒子群优化的二维倒数熵斜分法在运行时间上降低了约40%,分割效果更佳。
- 吴一全占必超
- 关键词:图像分割阈值选取
- 一种可有效分割小目标图像的阈值选取方法被引量:20
- 2011年
- 目标检测与识别中常遇到目标与背景大小之比很小的小目标图像分割问题,此时现有的阈值分割方法几乎都失效。为此,提出了一种基于背景与目标的面积差和类内方差的小目标图像分割阈值选取方法。指出了目前图像阈值分割方法不能有效分割小目标图像这一缺陷,给出了基于背景与目标面积差和类内方差的一维直方图、二维直方图区域直分及更为有效的二维直方图区域斜分阈值选取公式,导出了相应二维斜分阈值选取的快速递推算法;最后在实验结果中给出了本文方法的图像阈值分割结果和运行时间,并与Otsu、最大熵及Fisher阈值选取快速方法进行了比较。结果表明:本文方法能准确地分割小目标图像,且运行时间短,抗噪性好。
- 吴一全吴加明占必超
- 关键词:信息处理技术红外小目标检测阈值选取快速递推算法
- 基于改进的二维交叉熵及Tent映射PSO的阈值分割被引量:4
- 2012年
- 最近提出的二维交叉熵阈值分割方法所依据的灰度级-平均灰度级直方图存在错分,且寻求最优阈值时,即使采用递推算法仍需遍历整个搜索空间,运行速度有待进一步提高。为此,本文给出改进的灰度级-梯度二维直方图,据此导出了相应的二维最小交叉熵阈值选取公式及其递推算法,并且采用改进Tent映射混沌粒子群优化(particle swarm optimization,PSO)算法搜寻二维最优阈值。大量实验及与现有二维交叉熵方法的对比表明,所提出的方法在计算最优阈值时尽可能考虑了所有目标点和背景点,从而使分割结果更加精确;而求取阈值因只需遍历其中小部分解空间,使运行时间约减少到原来的10%~40%。
- 吴一全吴诗婳占必超张晓杰张生伟
- 关键词:阈值选取交叉熵TENT映射混沌粒子群优化算法二维直方图
- 基于类内绝对差和混沌粒子群的红外图像分割被引量:10
- 2010年
- 提出了基于类内绝对差、背景与目标面积差及混沌小生境粒子群优化(NCPSO)的红外目标图像阈值分割方法。类内绝对差小能确保分割后类的内聚性好,背景与目标的面积差可抑制均等分割的趋势,两者综合构成更为合理的阈值选取准则函数。给出了一维阈值选取公式,通过推广到二维,抗噪性能明显改善;针对二维阈值分割计算量大的问题,利用混沌变异的小生境粒子群算法搜索最佳阈值向量;最后与Fisher准则法、Otsu方法和最大熵阈值分割法作了比较。实验结果表明,该方法在分割效果和运行时间上都具有明显的优势。
- 吴一全占必超吴加明
- 关键词:图像处理红外图像分割
- 基于双树复小波变换和混沌粒子群优化的红外小目标检测
- 2010年
- 针对存在背景干扰和噪声情况下的红外图像弱小目标检测问题,提出了基于双树复小波变换和混沌粒子群优化的检测方法。该方法一方面先基于双树复小波变换对原始图像进行去噪,再利用Top-hat算子抑制背景;另一方面先利用Top-hat算子抑制原始图像的背景,经双树复小波去噪后,再进一步使用Top-hat算子。将上述两方面得到的图像求和即为预处理图像。然后基于混沌粒子群优化的类内绝对差及背景与目标面积差的阈值选取方法分割预处理图像。大量实验结果表明,与基于小波和形态学的红外目标检测方法相比,该方法抗噪性强,具有更为优越的检测性能。
- 吴一全纪守新占必超
- 关键词:红外弱小目标检测双树复小波变换TOP-HAT算子混沌粒子群优化
- 红外图像的增强、分割及目标跟踪技术研究
- 红外成像制导已成为精确制导领域的一个重要发展方向。研究红外图像的增强、分割及目标跟踪技术对于提高红外成像制导系统的性能具有重要的意义。本文在现有成果的基础上研究了红外图像的增强、分割及目标跟踪技术,主要工作如下:首先,讨...
- 占必超
- 关键词:红外图像目标跟踪多尺度RETINEXNSCTSIFT粒子滤波
- 文献传递
- 基于无下采样Contourlet变换和独立分量分析的红外弱小目标检测被引量:15
- 2011年
- 针对存在背景干扰和噪声情况下的红外弱小目标检测问题,提出一种基于无下采样contourlet变换(NSCT)和独立分量分析(ICA)的检测方法。首先原始图像减去通过快速ICA分离出的背景图像,再经NSCT去噪,接着利用新型Top-hat变换滤波得到预处理图像;然后采用基于类内方差及背景与目标面积差的阈值选取方法来分割预处理图像。针对红外小目标图像进行了大量实验,并和基于快速ICA、基于NSCT的红外目标检测方法进行了比较,结果表明所提出的方法抗噪性强,具有更为优越的检测性能。
- 吴一全纪守新占必超
- 关键词:图像处理红外弱小目标检测独立分量分析
- 基于平稳小波变换和Retinex的红外图像增强方法被引量:55
- 2010年
- 针对基于小波变换的红外图像增强方法视觉效果不够理想的缺点,提出了一种基于平稳小波变换和Retinex的红外图像增强方法,利用Retinex增强算法增强图像的视觉效果,并改善其亮度均匀性。首先,对红外图像经平稳小波变换后的最大尺度低频子带图像进行多尺度Retinex增强;然后,利用贝叶斯萎缩阈值法对高频子带图像进行阈值去噪,并根据低频子带图像的局部对比度和模糊规则计算高频子带的增益系数,从而得到增强后的高频子带图像;最后,由低频子带图像和高频子带图像重构得到增强后的图像。针对大量图像进行了实验和增强效果的定性与定量评价,并与双向直方图均衡法、二代小波变换法、Curvelet变换法和多尺度Retinex法作了比较。结果表明,所提出的方法增强了图像细节,抑制了噪声,并明显改善了图像的整体视觉效果。
- 占必超吴一全纪守新
- 关键词:红外图像处理图像增强平稳小波变换模糊规则
- 基于二维对称交叉熵的红外图像阈值分割被引量:3
- 2010年
- 针对现有的阈值选取方法应用于目标与背景面积相差悬殊的红外图像时常导致严重的误分割现象,本文提出了一种基于对称交叉熵及背景与目标面积差的红外目标图像阈值选取方法。对称交叉熵能确保分割后类的内聚性好,而背景与目标面积差可抑制均等分割的趋势,将两者综合构成了更为合理的阈值选取准则函数。首先导出了一维阈值选取公式;然后给出了二维直方图斜分阈值及二维直方图斜分的简化阈值选取方法,抗噪性能明显改善;最后与二维斜分的最大熵阈值、Otsu阈值及非对称交叉熵阈值选取方法进行了比较,实验结果表明,本文方法在分割效果上具有明显的优势。
- 纪守新吴一全占必超
- 关键词:红外图像分割