An approach to identifying fuzzy models considering both interpretability and precision was proposed. Firstly, interpretability issues about fuzzy models were analyzed. Then, a heuristic strategy was used to select input variables by increasing the number of input variables, and the Gustafson-Kessel fuzzy clustering algorithm, combined with the least square method, was used to identify the fuzzy model. Subsequently, an interpretability measure was described by the product of the number of input variables and the number of rules, while precision was weighted by root mean square error, and the selection objective function concerning interpretability and precision was defined. Given the maximum and minimum number of input variables and rules, a set of fuzzy models was constructed. Finally, the optimal fuzzy model was selected by the objective function, and was optimized by a genetic algorithm to achieve a good tradeoff between interpretability and precision. The performance of the proposed method was illustrated by the well-known Box-Jenkins gas furnace benchmark; the results demonstrate its validity.