Fast scan voltammetry is an efficient tool to distinguish oxidative/reductive adsorp- tion/desorption from that for bulk reaction. In this work, we provide a methodology that the isotherm of oxidative/reductive adsorption desorption processes at electrode surface can be obtained using just one solution with relatively low reactant concentration, by taking the advantage of varying the potential scan rate (relative of the diffusion rate) to tune the adsorption rate and proper mathematic treatment. The methodology is demonstrated by taking acetate adsorption at Pt(lll) in acidic solution as an example. The possibility for extension of this method toward mechanistic studies of complicated electrocatalytic reactions is also given.
Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOD) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH- containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO.