Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa,app decreases with φ, while pre-exponential factor A remains nearly unchanged,which conforms well the prediction from Butler-Volmer equation. In contrast, with φ nega-tive shifts from the onset potential for HER to the potential of zero charge (PZC≈-0.4 V), both Ea,app and A for HER increase (e.g., Ea,app increases from 24 kJ/mol to 32 kJ/mol). The increase in Ea,app and A with negative shift in φ from -0.25 V to PZC is explained by the increases of both internal energy change and entropy change from reactants to the transition states, which is correlated with the change in the hydrogen bond network during HER. The positive entropy effects overcompensate the adverse effect from the increase in the activation energy, which leads to a net increase in HER current with the activation energy negative shift from the onset potential of HER to PZC. It is pointed out that entropy change may contribute greatly to the kinetics for electrode reaction which involves the transfer of electron and proton, such as HER.
The MoOx/AuNPs composite film modified glassy carbon electrode was fabricated by electro-depositing simultaneously gold nanoparticles and molybdenum oxides using cyclic voltammetry. The morphology and topography of the MoOx/AuNPs composite were char-acterized by scan electron microscopy and X-ray photoelectron spectroscopy respectively, and the electrocatalytic oxidation of glucose at the MoOx/AuNPs composite film was inves-tigated and analyzed in detail. It was shown that the MoOx/AuNPs composite was of strong electrocatalytic activity towards oxidation of glucose as well as other saccharides, so that an attempt was made for direct voltammetric determination of glucose. Then the positive scan polarization reverse catalytic voltammetry was proposed for the first time. Based on this method, the pure oxidation current was extracted by subtraction of the blank current in the reverse scan. The current sensitivity was enhanced tremendously and the signal to noise ra-tio was improved adequately. The electrocatalytic oxidation of glucose at the MoOx/AuNPs modified electrode was performed in alkaline medium, a wide linear range from 0.01 mmol/L to 4.0 mmol/L of glucose, a higher current sensitivity of 2.35 mA/(mmol/L·cm2), and a lower limit of detection of 9.01 μmol/L (at signal/noise=3) were achieved. In addition, the electrocatalytic oxidation of other saccharides such as lactose, fructose and sucrose was also evaluated.