汤洁泉
- 作品数:2 被引量:0H指数:0
- 供职机构:华东师范大学理工学院数学系更多>>
- 发文基金:上海市基础研究重大(重点)项目上海市自然科学基金国家自然科学基金更多>>
- 相关领域:理学更多>>
- 几类图的最优填充数
- 2006年
- 运用图的最优填充分解定理和局部最优填充定理,将一些特殊图类G1×G2,S(G), R(G)和双圈图分解为一些可求得最小填充数的图,得到如下结果:(1)F(Pm×Pn)≤(m- 2)(n-2),其中m≥2,n≥2;(2)若G是有m条边的n阶2-连通图,则F(S(G))=m+F(G); (3)设图G为双圈图,两个诱导圈的圈长分别为p和q,t为这两个圈公共部分的路上的顶点个数(不包括两个端点),则F(G)=p+q-t-6.
- 汤洁泉束金龙
- 关键词:填充数弦图双圈图
- 图的填充数的一些新进展
- 本文主要研究了一些特殊图类的最小填充数问题,通过已知的分解约化定理,将一些特殊图类分解为一些可求得最小填充数的图,从而求得其最小填充数。对G1(.×)G2,Sk(G),R(G),双圈图,哈林图等几类图的最小填充数进行了讨...
- 汤洁泉
- 关键词:双圈图填充数
- 文献传递