王喆
- 作品数:29 被引量:47H指数:4
- 供职机构:华东理工大学信息科学与工程学院更多>>
- 发文基金:国家自然科学基金上海市教育发展基金上海市教育委员会创新基金更多>>
- 相关领域:自动化与计算机技术电子电信医药卫生更多>>
- 基于MAML算法的YOLOv3目标检测模型被引量:4
- 2022年
- 作为典型的一体化卷积神经网络,YOLOv3模型的网路传输途径简单,检测速度相对较快,但检测精度较低。当遇到新的目标在训练数据集中存在的样本较少时,模型检测会更加不准确,甚至会出现检测不到的情况。本文基于与模型不相关的元学习算法(MAML)改进了YOLOv3主干网络的结构,使其具有内循环和外循环的梯度下降,在初始参数基础上进行多步的梯度调整,达到仅用小样本数据就能快速收敛的目的。实验结果表明,该方法使得YOLOv3模型的检测精度提升了5.24%,且可以使梯度下降保持稳定,有效地满足YOLOv3模型在小样本数据训练情况下识别目标位置的精准性和泛化性。
- 沈震宇朱昌明王喆
- 关键词:计算机视觉图像识别特征提取目标检测
- 基于原型回放和动态更新的类增量学习方法
- 2023年
- 灾难性遗忘问题在增量学习场景中普遍存在,而对旧知识的遗忘会严重影响模型在整个任务序列上的平均性能。因此,针对在增量学习过程中原型偏移引起的旧知识遗忘问题,提出了一种基于原型回放和动态更新的类增量学习方法。该方法在原型更新阶段保留新类的原型后,进一步采用动态更新策略对旧类的原型进行实时更新。具体地,在学习新任务后,该策略基于当前可访问数据的已知偏移,来实现在旧类原型中存在的未知偏移的近似估计,并最终完成对旧类原型的更新,从而缓解原始的旧类原型与当前的特征映射间的不匹配。在CIFAR-100和Tiny-ImageNet数据集上的实验结果表明,所提出的基于原型回放和动态更新的类增量学习方法能够有效地减少对旧知识的灾难性遗忘,提高模型在类增量学习场景中的分类性能。
- 张禹曹熙卿钮赛赛许鑫磊张倩王喆
- 基于类心距离的模糊支持向量数据描述被引量:3
- 2016年
- 针对传统的支持向量数据描述模型忽略了样本分布的重要性,提出了基于类心距离的模糊支持向量数据描述算法,并将其应用在UCI机器学习数据库的二分类和多分类数据集中。该算法利用样本到两类中心距离的比值赋予样本权重,增大贡献度大的样本的权重,降低贡献度小的样本的权重,突出样本之间的差异性,从而提高了算法的分类效果。实验表明,该算法具有比传统支持向量数据描述更好的学习能力和分类效果。
- 王敏光王喆
- 关键词:模式识别支持向量数据描述
- 基于帧级特征的端到端说话人识别被引量:2
- 2020年
- 现有的说话人识别方法仍存在许多不足。基于话语级特征输入的端到端方法由于语音长短不一致需要将输入处理为同等大小,而特征训练加后验分类的两阶段方法使得识别系统过于复杂,这些因素都会影响模型的性能。文中提出了基于帧级特征的端到端说话人识别方法。模型采用帧级语音作为输入,同等大小的帧级特征有效解决了话语级语音输入长度不一致的问题,且帧级特征可保留更多的话者信息。与如今主流的两阶段法识别系统相比,端到端的识别方法将特征训练和分类打分一体化,简化了模型的复杂性。在训练阶段,每段语音被分帧成多个帧级语音输入到卷积神经网络(Convolutional Neural Networks,CNN)用于训练模型。在评估阶段,训练好的CNN模型对帧级语音进行分类,每段语音基于多个帧的预测得分计算该条语音数据的预测类别。每段语音的类别通过取各帧最多预测类别和各帧预测值平均的方法来计算。为了验证方法的有效性,使用普通话情感语音语料库(MASC)的语音数据进行训练和测试。实验结果表明,与现有方法相比,基于帧级特征的端到端识别方法的性能表现更佳。
- 花明李冬冬王喆高大启
- 关键词:说话人识别端到端卷积神经网络
- 基于移动窗口注意力机制和编码解码器的肺结节分类方法被引量:1
- 2024年
- 针对肺结节分类方法仍存在缺乏推理过程的可解释性和判别性特征表示等问题,提出了一个基于移动窗口注意力机制和编码解码器肺结节分类方法(SWAC)来对图像进行特征提取。该模型结合了卷积神经网络(CNN)和移动窗口注意力机制的优势,通过关注结节分类所必需的区域进行结节分类,有效地提取了结节的浅层特征和深层特征。该卷积神经网络引入了Focal损失函数,对网络主干进行特征约束来关注难分类样本,以此提升网络的判别表征能力。在LIDC-IDRI数据集上通过消融实验分析了该方法中各部分的贡献和影响,结果表明,SWAC分类方法具有优异的性能。
- 张琮昊迟子秋王占全王喆
- 基于下采样的局部判别矩阵型分类的心衰死亡率预测被引量:2
- 2019年
- 不平衡分类问题的特征是样本集中每类样本个数相差较大,导致分类结果偏向多数类样本,少数类样本被忽视。而在不平衡分类问题中,少数类样本需要更多的关注。本文基于上海曙光医院提供的心衰医疗数据,提出了一个针对心衰病人死亡率预测的框架,为心衰的辅助治疗和诊断提供有效的信息。心衰医疗病例属于典型的不平衡分类问题,心衰病人在总的病人数量中只占少数,在检查中,应尽可能重点关注心衰病例。本文提出的框架采用下采样方法调整样本的比例,使类与类之间的规模平衡;使用主成分分析方法对高维数据进行特征选择;并在采样后的数据集上训练局部敏感判别矩阵型分类器,提高局部样本的关注度以获得更好的分类性能。实验结果表明,该框架能对心衰医疗数据提供较好的预测结果,与同类算法比较,表现出了更好的性能,是一个有效且实用的方法。
- 陈钊志李冬冬王喆阮彤阮彤
- 关键词:分类器
- 两级特征联合学习的情感说话人识别
- 2023年
- 针对说话人识别的性能易受到情感因素影响的问题,提出利用片段级别特征和帧级别特征联合学习的方法。利用长短时记忆网络进行说话人识别任务,提取时序输出作为片段级别的情感说话人特征,保留了语音帧特征原本信息的同时加强了情感信息的表达,再利用全连接网络进一步学习片段级别特征中每一个特征帧的说话人信息来增强帧级别特征的说话人信息表示能力,最后拼接片段级别特征和帧级别特征得到最终的说话人特征以增强特征的表征能力。在普通话情感语音语料库(MASC)上进行实验,验证所提出方法有效性的同时,探究了片段级别特征中包含语音帧数量和不同情感状态对情感说话人识别的影响。
- 刘金琳李冬冬王喆蔡立志
- 基于Relief特征选择的心衰死亡率预测被引量:4
- 2018年
- 提出心衰死亡率预测系统,预测心衰病人本次住院后30天内死亡率。基于上海曙光医院提供的心衰病人信息,首先对原始数据和特征进行预处理。由于特征的冗余性,再选用经典的Relief特征选择算法筛选出重要的心衰特征,最后选用bp-SVM算法来实现死亡率预测。实验结果证明,死亡率预测系统可以达到较高的性能并通过提供决策信息,辅助医生治疗病人。医生可以根据系统预测的病人死亡率的高低,采取不同的治疗方式,提高临床诊断结果和医院的资源分配。
- 姚丽娟李冬冬王喆
- 关键词:心衰
- 结合注意力机制与几何信息的特征融合框架
- 2022年
- 不平衡问题在现实世界中普遍存在,而不平衡数据的分布不平衡性会严重影响模型的性能。不平衡数据通常从两方面影响模型性能:一方面是数量上的不平衡导致多数类的数据对参数有更多的更新,导致模型更加偏向多数类;另一方面是少数类样本特别少,多样性不足从而导致模型表征能力不足。针对上述问题,提出了一个结合注意力机制与几何信息的特征融合框架。具体而言,该模型首先通过预训练使模型学习数据的语义信息和判别性信息,并结合注意力机制发掘模型对不同类别数据的关注点。在第二阶段,模型通过几何信息挖掘边界特征,并且结合第一阶段得到的注意力权重对边界特征进行融合,从而对少数类的数据进行补充。基于长尾CIFAR10,CIFAR100和KDDCup99数据集的实验结果表明,所提的结合注意力机制与几何信息的特征融合框架能够有效提升对不平衡数据的分类性能,并且对于不同类型的数据,包括图像数据和结构化数据,都能有效提高分类性能。
- 董奇达王喆吴松洋
- 关键词:不平衡数据几何信息
- 基于多尺度特征互补和聚合约束的肺结节分类方法
- 2024年
- 肺结节分类问题是早期肺癌检测与诊断的重要问题之一,针对现有的肺结节分类方法存在多尺度特征融合的信息冗余和缺乏判别性特征表示等问题,提出了一个基于多尺度特征互补与聚合约束(Multi-scale Feature Complementation and Aggregate Constraint, MFCAC)的肺结节分类方法,并提出了多尺度特征互补模块用于学习相邻尺度特征的差异信息,从而避免特征融合过程中的信息冗余;同时在网络特征层引入了聚合约束损失,实现对同类特征的聚集,提高网络判别性特征表示能力;将两个模块融入在编码器-解码器架构中形成MFCAC,共同作用实现高效分类。本文在LIDC-IDRI数据集上进行了对比实验,并通过消融实验分析了该方法中各组成部分的贡献和影响,结果表明,相较于对比算法,MFCAC在肺结节分类上具有更优的性能。
- 张琮昊迟子秋王占全王喆
- 关键词:多尺度特征卷积神经网络