刘毅慧 作品数:49 被引量:77 H指数:5 供职机构: 齐鲁工业大学 更多>> 发文基金: 山东省自然科学基金 国家自然科学基金 博士科研启动基金 更多>> 相关领域: 自动化与计算机技术 生物学 医药卫生 化学工程 更多>>
神经网络提高肝细胞癌磁共振波谱诊断正确率 被引量:2 2010年 通过评价31磷磁共振波谱(31Phosphorus Magnetic Resonance Spectroscopy,31P-MRS)来辨别三种诊断类型:肝细胞癌,正常肝和肝硬化。运用反向传输神经网络(BP)和径向基函数神经网络(RBF)分析31P-MRS数据,分别建立神经网络模型,进行肝细胞癌的诊断分类以期提高识别率。实验结果证明,应用神经网络模型后,31P-MR波谱对活体肝细胞癌的诊断正确率从89.47%提高到97.3%,且BP更优于RBF。 王丽娟 刘毅慧 刘强 李保朋 成金勇关键词:磁共振波谱 肝细胞癌 径向基函数神经网络 活体肝细胞磷31磁共振波谱数据分类 被引量:1 2011年 基于活体肝细胞的31P磁共振波谱图(31Phosphorus Magnetic Resonance Spectroscopy,31P-MRS)对肝细胞数据进行诊断,分为3种类型:肝癌、肝硬化和正常肝。分别运用线性分类器和二次分类器对数据分类,并在分类前进行了特征抽取。线性分类器和二次分类器在"留一法"中对上述3种类型的分类准确率分别约为81.37%、77.75%、92.30%和95.27%、99.89%、99.70%。实验证明二次分类器相对于线性分类器,明显地提高了分类准确率。 桑君 刘毅慧 王韶卿 刘强 成金勇关键词:磁共振波谱 线性判别分析 基于近邻成分分析算法的原发性肝癌精确放疗后HBV再激活分类预测 被引量:3 2018年 原发性肝癌(PLC)患者在精确放疗后乙型肝炎病毒(HBV)再激活是一种常见并发症,及时的预测防护能降低发病率、死亡率。研究表明:多余的特征变量会影响HBV再激活的预测精度。通过提出基于近邻成分分析(NCA)的特征选择方法找出HBV再激活的危险因素及特征组合。之后分别建立经Bayes优化前后的支持向量机模型(SVM)对这些关键特征子集及初始特征集进行分类预测。实验结果表:明HBV DNA水平、KPS评分、分割方式、外放边界、V25、肿瘤分期TNM、ChildPugh等都是影响HBV再激活的危险因素。其中经NCA特征选择之后发现的V25是在乙型肝炎病毒再激活研究中首次提出的危险因素。10折交叉验证下特征组合HBV DNA水平、外放边界、V25的预测精度高达86.11%。支持向量机分类器可以很好的应用于乙型肝炎病毒再激活的研究,特征选择后的关键特征组合具有更优越的分类性能。 赵咏旺 刘毅慧 黄伟基于生成对抗和卷积神经网络的蛋白质二级结构预测 被引量:1 2020年 在生物信息学领域,对于蛋白质二级结构预测是一项具有挑战性的任务,对于确定蛋白质的结构和功能有着极其重要的意义。本文融合了生成对抗网络和卷积神经网络模型进行蛋白质二级结构预测,首先利用生成对抗网络提取蛋白质特征,其次将生成对抗网络提取的特征结合PSSM矩阵作为卷积神经网络的输入,得到预测结果。在测试集CASP9,CASP10,CASP11,CASP12,CB513和PDB25获得了87.06%,87.24%,87.31%,87.39%,88.13%和88.93%,比单独使用卷积神经网络提高了3.88%,4.6%,7.97%,5.85%,5.78%,4.25%。实验结果表明,生成对抗网络特征提取能力是非常显著的。 赵亚武 张华兰 刘毅慧关键词:生物信息学 卷积神经网络 蛋白质二级结构预测 基于长短时记忆循环网络和基团特征的蛋白质二级结构预测 2020年 蛋白质二级结构预测是蛋白质结构研究领域的重要课题,随着机器学习和深度学习的发展,多种多样的预测模型被提出,实验采用双向长短时记忆循环网络模型,取消滑动窗口限制,充分考虑氨基酸长距离相互作用和氨基酸序列前后文之间的相互影响。重新设计了网络的输入特征,在PSSM基础上增加了42基团特征,使用大数据集进行训练,在公共测试集CASP9,CASP10,CASP11和CASP12上Q3准确率分别达到了85.74%,86.83%,84.73%和83.79%。实验结果表明,蛋白质二级结构预测可在新的特征设计,考虑氨基酸长距离相互作用和大数据的使用方向上进一步的研究。 韩心怡 刘毅慧关键词:蛋白质 蛋白质二级结构预测 基团 基于CART算法的肺癌微阵列数据的分类 被引量:5 2011年 基因芯片技术是基因组学中的重要研究工具。而基因芯片数据( 微阵列数据) 往往是高维的,使得降维成为微阵列数据分析中的一个必要步骤。本文对美国哈佛医学院 G. J. Gordon 等人提供的肺癌微阵列数据进行分析。通过 t- test,Wilcoxon 秩和检测分别提取微阵列数据特征属性,后根据 CART( Classification and Regression Tree) 算法,以 Gini 差异性指标作为误差函数,用提取的特征属性广延的构造分类树; 再进行剪枝找到最优规模的树,目的是提高树的泛化性能使得能很好适应新的预测数据。实验证明: 该方法对肺癌微阵列数据分类识别率达到 96% 以上,且很稳定; 并可以得到人们容易理解的分类规则和分类关键基因。 陈磊 刘毅慧关键词:微阵列数据 决策树 CART算法 基于小波高频系数基因芯片数据的特征提取 被引量:3 2011年 结合小波分析理论与支持向量机理论,构造分类器模型,将前列腺癌基因芯片数据分成癌症和正常两种。本文着重研究小波高频系数基因芯片数据的特征提取,并通过实验对比小波高频系数和低频系数特征提取对分类器性能的影响。其中haar小波3层分解提取高频系数,送入分类器分类后,得到的正确分类率为93.31%。db1小波4层分解提取低频系数,送入分类器分类后,得到的正确分类率为93.53%。小波低频系数特征提取分类效果总体上好于高频系数,分类器性能稳定。 刘玉杰 刘毅慧关键词:小波分析 支持向量机 低频系数 基于多重进化矩阵的蛋白质特征向量构造方法 被引量:1 2018年 特征向量的构造是蛋白质二级结构预测的一个关键问题.现有的研究方法,通常只使用BLOSUM62进化矩阵生成PSSM矩阵,对蛋白质进化过程中存在的氨基酸残基突变现象缺乏考虑.本文提出利用多重进化矩阵构造蛋白质特征向量,其融合了不同进化时间的PSSM矩阵,不仅能够很好地反映序列中氨基酸的位置信息,而且能够反映序列进化过程中氨基酸位点发生突变产生的影响.本文通过组合不同进化程度的矩阵来构造特征向量,选用逻辑回归、随机森林和多分类支持向量机三种分类算法作为预测工具,利用网格搜索法和交叉实验法优化参数,在RS126、CB513和25PDB公用数据集上进行了若干组实验.对比实验结果表明,本文所提出基于多重进化矩阵的蛋白质特征向量构造方法能够有效提高蛋白质二级结构的预测精度. 杜月寒 鹿文鹏 刘毅慧 成金勇关键词:蛋白质结构预测 逻辑回归 多分类支持向量机 陶瓷工业热工设备CAD系统开发及应用(Ⅰ) 系统概述 被引量:4 1997年 “陶瓷工业热工设备CAD系统”能完成传统工程设计计算,砌体材料、烟囱、燃烧条件的优化设计,数据及图纸资料的管理、检索、编辑、计算机交互或半自动绘图。 王世峰 刘毅慧 王伦友 张旭东关键词:陶瓷工业 热工设备 窑炉 CAD系统 基于ICA的卵巢癌质谱数据分析 2009年 卵巢癌蛋白质谱数据属于高通量数据,含有大量冗余信息,且许多重要信息都包含在高阶信息中,而独立成分分析可以从高阶信息中提取有用特征。将传统的独立成分分析融入卵巢癌蛋白质谱数据的特征提取中,并利用类信息机制监督独立成分分析过程。仿真实验结果表明,独立成分分析和监督式独立成分分析在卵巢癌蛋白质谱数据集研究过程中取得了良好的效果,识别率可达98%。 王昭鑫 刘毅慧关键词:特征提取