目标检测是计算机视觉领域的研究热点和基础任务,其中基于锚点(Anchor)的目标检测已在众多领域得到广泛应用。当前锚点选取方法主要面临两个问题:基于特定数据集的先验取值尺寸固定、面对不同场景泛化能力弱。计算锚框的无监督K-means算法,受初始值影响较大,对目标尺寸较单一的数据集聚类产生的锚点差异较小,无法充分体现网络多尺度输出的特点。针对上述问题,本文提出一种基于多尺度的目标检测锚点构造方法(multi-scale-anchor,MSA),将聚类产生的锚点根据数据集本身的特性进行尺度的缩放和拉伸,优化的锚点即保留原数据集的特点也体现了模型多尺度的优势。另外,本方法应用在训练的预处理阶段,不增加模型推理时间。最后,选取单阶段主流算法YOLO(You Only Look Once),在多个不同场景的红外或工业场景数据集上进行丰富的实验。结果表明,多尺度锚点优化方法MSA能显著提高小样本场景的检测精度。
针对稀疏重构下二维波达方向(2D-DOA)估计存在计算量大的问题,提出一种基于协方差矩阵降维稀疏表示的二维波达方向估计方法。首先引入空间角构造流形矢量矩阵冗余字典,将方位角和俯仰角组合从二维空间映射到一维空间,降低了字典的长度和求解复杂度,并且能自动实现俯仰角和方位角配对;其次改进了样本协方差矩阵的稀疏表示模型,对该模型进行了降维处理;然后由协方差矩阵稀疏重构的残差约束特性得到约束残差项置信区间,避免采用正则化方法导致参数选取困难;最后通过凸优化包实现了二维波达方向的估计。仿真实验表明,待选取的协方差矩阵列数达到某个阈值(在只有两个入射信号情况下该值为3)时,可准确实现入射信号角的估计;当信噪比(SNR)较小(<5 d B)时,该方法估计精度优于基于空间角的特征矢量算法;低快拍数(<100)下该方法估计精度略低于特征矢量法,但小间隔角度下估计精度与后者相当。