针对空间分解类信噪比(SNR)估计算法中子空间维数估计复杂度较高,低信噪比下估计偏差较大的问题,提出了一种改进的子空间维数估计算法。该算法首先利用样本自相关矩阵的奇异值序列进行后向差分得到梯度序列,对梯度序列每一项与后5项之和的比值进行搜索,最大比值所对应的奇异值序号作为信号子空间维数,最后计算信噪比。合适数据长度下的仿真结果表明:在信噪比-5 d B^20 d B范围内,常规通信信号的信噪比估计平均偏差小于0.5 d B,标准差小于1 d B;该算法提升了低信噪比下的估计性能,运算量较小,无需知道调制方式、载波频率、符号率等先验信息,在低信噪比时对信噪比时变的跟踪估计更为准确,且对复杂高阶调制信号同样适用。
信噪比(SNR)估计是信道估计的重要组成部分,很多先进通信系统和信号处理方法都将信噪比作为先验信息,因此对信噪比估计方法的研究尤为重要。基于多进制相移键控(MPSK)信号模型,对最大似然类、矩估计类和空间分解类算法进行了性能分析和仿真。在一定条件下,上述算法的估计偏差在[0,20]d B区间内均小于1 d B,其中最大似然类算法估计精确度最高,但易受解调误码率影响;矩估计类算法在低信噪比时性能较好,高信噪比时易受算法自噪声影响;空间分解类算法适应性最强,但实时性较差。通过对上述算法一致性和差异性分析,总结了信噪比估计的研究进展和主要问题,明确了复杂调制信号宽范围信噪比估计和空间分解方法的研究方向,为后续研究提供了解决思路和改进措施。