The Arabidopsis AtMYB103 gene is required for anther development,but whether the homologous gene in rice has the same role is unclear.Sequence analysis indicated that the rice OsMYB103 gene shares a high sequence similarity with AtMYB103.Therefore,we investigated the functional role of OsMYB103 in anther development using an RNAi approach.The OsMYB103 RNA transcript was expressed most abundantly in flowers,specifically in the tapetum,premeiotic pollen mother cells,and meiotic PMCs.OsMYB103-RNAi transgenic lines grew normally during their vegetative phase but displayed reduced male fertility,a phenotype that was associated with downregulated OsMYB103 transcript levels.Expression of OsMS2,an ortholog of the Arabidopsis AtMS2 gene,was also dramatically reduced in the transgenic plants.Knockdown of OsMYB103 led to defects in tapetum development,and most of the microspores in mature anthers lacked exines.Moreover,OsMYB103 could partially rescue the male sterility phenotype of an AtMYB103 knockout mutant ms188.Taken together,these results indicate that OsMYB103 does have an important role in rice tapetum and microspore development.
ZHANG Sen FANG ZiJun ZHU Jun GAO JuFang YANG ZhongNan
Previous reports indicated that AtMYB103 has an important role in tapetum development,callose dissolution,and exine formation in A.thaliana anthers.Here,we further characterized its function in anther development by expression pattern analysis,transmission electron microscopy observation of the knockout mutant,and microarray analysis of downstream genes.A total of 818 genes differentially expressed between ms188 and the wild-type were identified by global expression profiling analysis.Functional classification showed that loss-of-function of AtMYB103 impairs cell wall modification,lipid metabolic pathways,and signal transduction throughout anther development.RNA in situ hybridization confirmed that transcription factors acting downstream of AtMYB103 (At1g06280 and At1g02040) were expressed in the tapetum and microspores at later stages,suggesting that they might have important roles in microsporogenesis.These results indicated that AtMYB103 is a crucial regulator of Arabidopsis anther development.
The endoplasmic reticulum quality control(ER-QC)is a conserved mechanism in surveillance of secreted signaling factors during cell-to-cell communication in eukaryotes.Recent data show that the ER-QC plays important roles in diverse cell-to-cell signaling processes during immune response,vegetative and reproductive development in plants.Pollen tube guidance is a precisely guided cell-cell communication process between the male and female gametophytes during plant reproduction.Recently,the female signal has been identified as small secreted peptides,but how the pollen tube responds to this signal is still unclear.In this review,we intend to summarize the role of ER-QC in plants and discuss the recent advances regarding our understanding of the mechanism of pollen tube response to the female signals.