Aerosol samples were collected in the Shiyi Glacier, Qilian Mountains from July 24 to August 19, 2012 and analyzed for major water-soluble ionic species(F-, Cl-, NO2-, NO3-, SO42-, Na+, NH4+, K+, Mg2+and Ca2+) by ion chromatography. SO42-and NH4+were the most abundant components of all the anions and cations, with average concentrations of 94.72 and 54.26 neq/m3, respectively, accounting for 34% and 20% of the total water-soluble ions analyzed. These mean ion concentrations were generally comparable with the background conditions in remote sites of the Qilian Mountains, but were much lower than those in certain cities in China. The particles were grouped into two dominant types according to their morphology and EDX signal: Si-rich particles and Fe-rich particles. Backward air mass trajectory analysis suggested that inland cities may contribute some anthropogenic pollution to this glacier, while the arid and semi-arid regions of central Asia were the primary sources of the mineral particles.
During the past five decades, fluctuations of glaciers were reconstructed from historical documents, aerial photographs, and remote sensing data. From 1956 to 2003, 910 glaciers investigated had reduced in area by 21.7% of the 1956 value, with a mean reduction for the individual glacier of 0.10 km2. The relative area reductions of small glaciers were usually higher than those of large ones, which exhibited larger absolute loss, indicating that the small glaciers were more sensitive to climate change than large ones. Over the past -50 years, glacier area decreased by 29.6% in the Heihe (黑河) River basin and 18.7% in the Beidahe (北大河) River basin, which were the two regions investigated in the Middle Qilian (祁连) Mountain region. Compared with other areas of the Qilian Mountain region, the most dramatic glacier shrinkage had occurred in the Middle Qilian Mountain region, mainly resuiting from rapid rising temperatures. Regional differences in glacier area changes are related to local climate conditions, the relative proportion of glaciers in different size classes, and other factors.
Daily samples of aerosol(n=27) were collected from September 21 st to October 4th, 2013 in Fukang(44.17°N, 88.45°E, 475 m a.s.l.), Xinjiang, Northwest China. The enrichment factors(EFc) of selected 49 elements showed that the aerosols had extremely high concentrations of heavy metals, probably indicating their anthropogenic origins. Morphology of individual aerosol particles was determined by scanning electron microscopy and energy-dispersive X-ray microanalysis. Based on morphology and elemental composition, the particles were clustered into three dominant types:(Ⅰ) crustal originated particles: Si/Al-rich particles(36%) and Si/Fe-rich particles(24%);(Ⅱ) mixed source particles; and(Ⅲ) pollution derived particles: Pb-rich particles(10%). The backward trajectories were calculated using the HYSPLIT model, and the results indicated the different anthropogenic sources for heavy metals in Fukang aerosols. Air mass from north was identified as the most polluted source when compared to south and west.