Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper.The results based on the direct numerical simulation(DNS)indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction,leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag.In addition,experiments are carried out in a water tunnel via electro-magnetic(EM)actuators designed to produce the bidirectional traveling wave excitation as described in calculations.As a result,the actual substantial drag reduction is realized successfully in these experiments.
The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift.
A direct numerical simulation(DNS) is performed to investigate the control effect and mechanism of turbulent channel flow with the distribution of spanwise Lorentz force. A sinusoidal distribution of constant spanwise Lorentz force is selected, of which the control effects, such as flow characters, mean Reynolds stress, and drag reductions, at different parameters of amplitude A and wave number k_x are discussed. The results indicate that the control effects vary with the parameter A and k_x. With the increase of A, the drag reduction rate D_r first increases and then decreases rapidly at low k_x,and slowly at high k_x. The low drag reduction(or even drag increase) is due to a weak suppression or even the enhancements of the random velocity fluctuation and mean Reynolds stress. The efficient drag reduction is due to the quasi-streamwise vortex structure induced by Lorentz force, which contributes to suppressing the random velocity fluctuation and mean Reynolds stress, and the negative vorticity improves the distribution of streamwise velocity. Therefore, the optimal control effect with a drag reduction of up to 58% can be obtained.
The evolution of low-speed streaks in the turbulent boundary layer of the minimum channel flow unit at a low Reynolds number is simulated by the direct numer- ical simulation (DNS) based on the standard Fourier-Chebyshev spectral method. The subharmonic sinuous (SS) mode for two spanwise-aligned low-speed streaks is excited by imposing the initial perturbations. The possibilities and the physical realities of the turbulent sustaining in the minimal channel unit are examined. Based on such a flow field environment, the evolution of the low-speed streaks during a cycle of turbulent sus- taining, including lift-up, oscillation, and breakdown, is investigated. The development of streamwise vortices and the dynamics of vortex structures are examined. The results show that the vortices generated from the same streak are staggered along the streamwise direction, while the vortices induced by different streaks tilt toward the normal direction due to the mutual induction effect. It is the spatial variations of the streamwise vortices that cause the lift-up of the streaks. By resolving the transport dynamics of enstrophy, the strength of the vortices is found to continuously grow in the logarithmic layer through the vortex stretching mechanism during the evolution of streaks. The enhancement of the vortices contributes to the spanwise oscillation and the following breakdown of the low-speed streaks.
The Lorentz force generated by electromagnetic field on the surface of the cylinder in the electrolyte solution may modify the structure of the flow boundary layer effectively. The transient control process of Lorentz force is investigated experimentally for lift amplification and vibration suppression. The experiments are conducted in a rotating annular tank filled with a low-conducting electrolyte. A cylinder with an electro-magnetic actuator is placed into the electrolyte. The lift force of cylinder is measured using the strain gages attached to a fixed beam, and the flow fields are visualized by the dye markers. The results show that the upper vortex on the cylinder is suppressed, and the wake becomes a line and leans to the lower side under the action of upside Lorentz force while the lower vortex on the cylinder is suppressed and limited in a small region. Therefore, the value of lift increases with the variation of flow field. However, the vortexes on the cylinder are suppressed fully under the action of symmetrical Lorentz force which leads to the suppression of lift oscillation and then the vibration of cylinder are suppressed fully.
The evolution of two spanwise-aligned low-speed streaks in a wall turbulent flow, triggered by the instability of the subharmonic varicose (SV) mode, is studied by a direct numerical simulation (DNS) method in a small spatial-periodic channel. The results show that the SV low-speed streaks are self-sustained at the early stage, and then transform into subharmonic sinuous (SS) low-speed streaks. Initially, the streamwise vortex sheets are formed by shearing, and then evolve into zigzag vortex sheets due to the mutual induction. As the intensification of the SV low-speed streaks becomes prominent, the tilted streamwise vortex tubes and the V-like streamwise vortex tubes can be formed simultaneously by increasing +~. When the SV low-speed streaks break down, new zigzag streamwise vortices will be generated, thus giving birth to the next sustaining cycle of the SV low-speed streaks. When the second breakdown happens, new secondary V-like streamwise vortices instead of zigzag streamwise vortices will be generated. Because of the sweep motion of the fluid induced by the secondary V-like streamwise vortices, each decayed low-speed streak can be divided into two parts, and each part combines with the part of another streak, finally leading to the formation of SS low-speed streaks.