Responses of the Asian Summer Monsoon(ASM) in future projections have been studied based on two core future projections of phase five of the Coupled Model Intercomparison Project(CMIP5) coordinated experiments with the IAP-coupled model FGOALS_s2(the Flexible Global Ocean-Atmosphere-Land System Model).The projected changes of the ASM in climatological mean and interannual variability were respectively reported.Both the South Asian Summer Monsoon(SASM) and the East Asian Summer Monsoon(EASM) were intensified in their climatology,featuring increased monsoon precipitation and an enhanced monsoon lower-level westerly jet flow.Accordingly,the amplitude of the annual cycle of rainfall over East Asia(EA) is enhanced,thereby indicating a more abrupt monsoon onset.After the EA monsoon onset,the EASM marched farther northward in the future scenarios than in the historical runs.In the interannual variability,the leading pattern of the EASM,defined by the first multi-variable EOF analysis over EA,explains more of the total variances in the warmest future scenario,specifically,Representative Concentration Pathway(RCP8.5).Also,the correlation coefficients analysis suggests that the relationship between the EASM interannual variations and ENSO was significantly strengthened in the future projections,which may indicate improved predictability of the EASM interannual variations.
The first decadal leading mode of East Asian summer rainfall(EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode(2DLM), accounting for 17.3% of rainfall decadal variance, as distinct from the other two neighboring modes of EAMR, based on the state-of-the-art in-situ rainfall data.This mode is characterized by a South-China-wet–HuaiheRiver-dry pattern, and is dominated by a quasi-30-yr period. Further analysis reveals the 2DLM corresponds to an enhanced lower-level monsoon jet, an eastward extension of the western North Pacific subtropical high, and a weakened East Asian upper-level westerly jet flow. The Tibetan Plateau surface temperature and Pacific Decadal Oscillation(PDO) are closely linked with the 2DLM. The regressed SST pattern indicates the PDO-like pattern of sea surface temperature anomalies may have a teleconnection relationship with the 2DLM of EASR.
Using the Simple Biosphere Model (SiB2), soil thermal properties (STP) were examined in a Tibetan prairie during the monsoon period to investigate ground surface temperature prediction. We improved the SiB2 model by incorporating a revised force-restore method (FRM) to take the vertical heterogeneity of soil thermal diffusivity (k) into account. The results indicate that (1) the revised FRM alleviates daytime overestimation and nighttime underestimation in modeled ground surface temperature (Tg), and (2) its role in little rainfall events is significant because the vertical gradient of k increases with increasing surface evaporation. Since the original formula of thermal conductivity (A) in the SiB2 greatly underestimates soil thermal conductivity, we compared five Mgorithms of A involving soil moisture to investigate the cause of overestimation during the day and underestimation at night on the basis of the revised FRM. The results show that (1) the five algorithms significantly improve Tg prediction, especially in daytime, and (2) taking one of these five algorithms as an example, the simulated Tg values in the daytime are closer to the field measurements than those in the nighttime. The differences between modeled Tg and field measurements are mostly within the margin of error of -4-2 K during 3 August to 4 September 1998.
Based on the theory of potential vorticity(PV),the unstable development of the South Asia High(SAH)due to diabatic heating and its impacts on the Indian Summer Monsoon(ISM)onset are studied via a case diagnosis of 1998.The Indian Summer Monsoon onset in 1998 is related to the rapidly strengthening and northward moving of a tropical cyclone originally located in the south of Arabian Sea.It is demonstrated that the rapid enhancement of the cyclone is a consequence of a baroclinic development characterized by the phase-lock of high PV systems in the upper and lower troposphere.Both the intensification of the SAH and the development of the zonal asymmetric PV forcing are forced by the rapidly increasing latent heat released from the heavy rainfall in East Asia and South East Asia after the onsets of the Bay of Bengal(BOB)monsoon and the South China Sea(SCS)monsoon.High PV moves southwards along the intensified northerlies on the eastern side of the SAH and travels westwards on its south side,which can reach its northwest.Such a series of high PV eddies are transported to the west of the SAH continuously,which is the main source of PV anomalies in the upper troposphere over the Arabian Sea from late spring to early summer.A cyclonic curvature on the southwest of the SAH associated with increasing divergence,which forms a strong upper tropospheric pumping,is generated by the anomalous positive PV over the Arabian Sea on 355 K.The cyclone in the lower troposphere moves northwards from low latitudes of the Arabian Sea,and the upper-layer high PV extends downwards and southwards.Baroclinic development thus occurs and the tropical low-pressure system develops into an explosive vortex of the ISM,which leads to the onset of the ISM.In addition,evolution of subtropical anticyclone over the Arabian Peninsula is another important factor contributing to the onset of the ISM.Before the onset,the surface sensible heating on the Arabian Peninsula is very strong.Consequently the subtropical anticyclone which dominated the Arabian Se
Rice-wheat (R-W) rotation systems are ubiquitous in South and East Asia, and play an important role in modulating the carbon cycle and climate. Long-term, continuous flux measurements help in better understanding the seasonal and interannual variation of the carbon budget over R-W rotation systems. In this study, measurements of CO2 fluxes and meteorological variables over an R-W rotation system on the North China Plain from 2007 to 2010 were analyzed. To analyze the abiotic factors regulating Net Ecosystem Exchange (NEE), NEE was partitioned into gross primary production (GPP) and ecosystem respiration. Nighttime NEE or ecosystem respiration was controlled primarily by soil temperature, while daytime NEE was mainly determined by photosythetically active radiation (PAR). The responses of nighttime NEE to soil temperature and daytime NEE to light were closely associated with crop development and photosynthetic activity, respectively. Moreover, the interannual variation in GPP and NEE mainly depended on precipitation and PAR. Overall, NEE was negative on the annual scale and the rotation system behaved as a carbon sink of 982 g C m 2 per year over the three years. The winter wheat field took up more CO2 than the rice paddy during the longer growing season, while the daily NEE for wheat and rice were -2.35 and -3.96 g C m-2, respectively. After the grain harvest was subtracted from the NEE, the winter wheat field became a moderately strong carbon sink of 251-334 g C m-2 per season, whereas the rice paddy switched to a weak carbon sink of 107-132 per season.
Anomalous warming occurred in the equatorial central-eastern Pacific in early May 2014, attracting much attention to the possible occurrence of an extreme E1 Nifio event that year because of its similarity to the situation in early 1997. However, the subsequent variation in sea surface temperature anomalies (SSTAs) during summer 2014 in the tropical Pacific was evidently different to that in 1997, but somewhat similar to the situation of the 1990 aborted E1 Nifio event. Based on NCEP (National Centers for Environmental Prediction) oceanic and atmospheric reanalysis data, the physical processes responsible for the strength of E1 Nifio events are examined by comparing the dominant factors in 2014 in terms of the preceding instability of the coupled ocean-atmosphere system and westerly wind bursts (WWBs) with those in 1997 and 1990, separately. Although the unstable ocean-atmosphere system formed over the tropical Pacific in the preceding winter of 2014, the strength of the preceding instability was relatively weak. Weak oceanic eastward-propagating downwelling Kelvin waves were forced by the weak WWBs over the equatorial western Pacific in March 2014, as in February 1990. The consequent positive upper-oceanic heat content anomalies in the spring of 2014 induced only weak positive SSTAs in the central-eastern Pacific-unfavorable for the subsequent generation of summertime WWB sequences. Moreover, the equatorial western Pacific was not cooled, indicating the absence of positive Bjerknes feedback in early summer 2014. Therefore, the development of E1 Nifio was suspended in summer 2014.
In general,the tropical cyclone(TC) activity is considered to be influenced by the heat content of underlying ocean,vertical shear of horizontal wind,vorticity in the low troposphere,moisture in the troposphere,and favorable condition for deep convection development.However,these factors by nature merely present the internal factors of either atmosphere or ocean which influence the TC activity.In fact,the energy budget of the Earth system and its variation,modulated by the land-sea thermal contrast,are the intrinsic reasons responsible for the variation of TC activity.Here we investigate the modulation of diabatic heating distribution associated with the land-sea thermal contrast on the distribution of TC activity energy source and sink as well as the seasonality.An accumulated energy increment index(AEI) is defined using the TC best track data,and the energy sources and sinks of TC activity are then diagnosed effectively and practically according to the distribution of AEI.Results show that the thermal contrast of land and ocean is the primary reason for asymmetric distribution of TC activity about the Equator as well as the zonally asymmetric distribution of TC activity.The energy sources of TC activity are dominated by condensation heating of deep convection or double-dominant heating,which includes the condensation heating and cooling of longwave radiation(LO),while the sink areas are dominated by LO.The large scale diabatic heating associated with land-sea thermal contrast results in more favorable conditions for TC activity over the west part of oceans than those over the east parts.Moreover,the intensity of interaction of different diabatic heating over the west and east parts of ocean is also affected by the zonal scale of the oceans,which induces the difference of TC activity over the western North Pacific(WNP) and North Atlantic(ATL).The favorable westerlies and anticyclonic vertical shear associated with the tropical zonally asymmetric diabatic heating also contribute to the most intense TC activity ov