A new multi-scale numerical model is presented using the fractal theory and adopting FEM to simulate the failure of concrete.The relation between the fractal box dimension in large scale and the damage to concrete in small scale is deduced.And the evolutionary process of elastic modulus and strength in small scale is given.Consequently,the multi-scale numerical model is proposed to describe the constitutive relation of concrete between small scale and large scale.A two-dimensional static analysis of a concrete block is performed by using this model and the calculation result is discussed.The propagation of cracks of the concrete block is also studied.
A new artificial boundary condition for time domain analysis of a structure-unlimited-foundation system was proposed.The boundary condition was based on the damping-solvent extraction method.The principle of the damping-solvent extraction method was described.An artificial boundary condition was then established by setting two spring-damper systems and one artificial damping limited region.A test example was developed to verify that the proposed boundary condition and model had high precision.Compared with the damping-solvent extraction method,this boundary condition is easier to be applied to finite element method(FEM)-based numerical calculations.
A new contraction joint element model for the interface in different meshes between the arch dam sections is con- structed. The study on the elastic-plastic damage constitutive model for concrete, which is applied to multi-axial stresses, is also taken. The models of the dam-foundation-reservoir system for Xingbiling and Jinping concrete arch dams, China are calculated using the proposed contraction joint elements and the elastic-plastic damage constitutive model to verify the proposed models. Results showed that the proposed contraction joint element model has a high precision in simulating the behavior of contraction joints and the elastic-plastic damage constitutive model has a high precision in simulating the behavior of the damage to the concrete.
A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.
The paper is to design and construct a coupled elasto-plasticity damage constitutive model for concrete.Based on the energy dissipation principle,the Hsieh-Ting-Chen four-parameter yield function is used.The model can reflect different strength characteristics of concrete in tension and compression,and reduce the limitation and lacuna of the traditional damage constitutive models for concrete.Furthermore,numerical test for concrete stress-strain relation under uniaxial tension and compression is given.Moreover,the damage process of concrete gravity dam is calculated and analyzed in seismic load.Compared with other damage constitutive models,the proposed model contains only one unknown parameter and the other parameters can be found in the Hsieh-Ting-Chen four-parameter yield function.The same damage evolution law,which is used for tension and compression,is good for determining stress-strain constitutive and damage characteristics in complex stress state.This coupled damage constitutive models can be applied in analyzing damage of concrete gravity dam and arch dam.