Although aerodynamic compliant foil bearings are successfully applied in a number of turbo-machineries,theoretical researches on the modeling,performance prediction of compliant foil bearings and the dynamic analysis of the related rotor system seem still far behind the experimental investigation because of structural complexity of the foil bearings.A generalized solution of the elasto-aerodynamic lubrication is presented in this paper by introducing both static and dynamic deformations of foils and solving gas-lubricated Reynolds equations with deformation equations simultaneously.The solution can be used for the calculation of dynamic stiffness and damping,as well as the prediction of static performances of foil bearings.Systematical theories and methods are also presented for the purpose of the prediction of dynamic behavior of a rotor system equipped with foil bearings.
Objective The experimental study on the lift-up speed of a new kind of compliant aerodynamic foil thrust bearings was performed on the multifunctional test rig established for testing the performances of foil gas bearings.Methods The lift-up speed of foil gas thrust bearing under given axial load was analyzed through the spectrum of axial displacement response in frequency domain.Results The test results indicated that the difference in the spectrum of axial displacement responses before and after lifting up of the rotor was obvious.After lifting up of the rotor,there were only larger components of rotation frequency and lower harmanic frequencies.If the rotor wasn't lift-up,there were also larger components of other frequencies in the spectrum.Conclusion So by analyzing the spectrum of axial displacement response,the results showed that the lift-up speed was about 1860rpm when the axial load was 31N.