国家自然科学基金(60974066) 作品数:15 被引量:176 H指数:6 相关作者: 叶西宁 罗健旭 张照生 刘晓慧 陈金辉 更多>> 相关机构: 华东理工大学 更多>> 发文基金: 国家自然科学基金 上海市自然科学基金 更多>> 相关领域: 自动化与计算机技术 环境科学与工程 电子电信 电气工程 更多>>
基于旋转变量的任意方向文本检测算法 被引量:2 2020年 针对CTPN算法不能检测倾斜文本和小尺度文本检测效果差的问题,提出一种基于旋转变量的改进文本检测算法(CTPN-R)。通过增加旋转角度预测层,将文本行拆分成一系列带旋转角度的anchor用于网络训练解决文本倾斜问题,加入特征融合层构建特征图金字塔以检测多尺度文本,改进边缘细化层的输出变量和回归方法,优化文本连接。CTPN-R在倾斜文本数据集MSRA-TD500上的检测综合性能指标F-measure达到了77.5%,比CTPN提高了38%。仿真结果表明,CTPN-R对实际场景中的文本图像检测精度高、实时性好,可以检测任意大小、任意方向文本。 张兴全 叶西宁关键词:文本检测 肤色检测和Hu矩在安全帽识别中的应用 被引量:94 2014年 安全帽在工业生产中的应用非常广泛,为了防止事故发生,确保生产安全,建立对安全帽的自动检测及报警系统变得越来越迫切。主要对安全帽的识别算法进行了研究,采用肤色检测的方法定位到人脸区域,并以此获得脸部以上的区域图像,将Hu矩作为图像的特征向量,分别比较神经网络和支持向量机(SVM)两种分类模型。实验结果表明:SVM对安全帽的识别有很好的效果,将会对监控系统实现智能化提供有力的支持和实际的指导意义。 刘晓慧 叶西宁关键词:肤色检测 HU矩 神经网络 SVM 音乐个性化推荐算法RR-UBPMF的研究 被引量:2 2017年 大规模隐式反馈数据的使用是推荐系统中的研究热点和难点问题。针对隐式反馈数据高噪声和缺少负反馈的特点,以音乐推荐为背景,在研究概率矩阵分解模型(PMF)的基础上提出了一种直接优化排名倒数(RR)的概率矩阵分解模型(RR-PMF)。通过与User-based KNN算法相结合提出了RR-UBPMF算法,并利用交叉最小二乘法(ALS)进行优化学习。在last.fm数据集上的实验结果表明,该算法在准确率(Precision)、尤其是在标准化折算累加值(NDCG)等评价指标上表现出极大的优势,能够明显提高预测准确性,并且具有良好的可拓展性。 王猛 叶西宁关键词:推荐系统 协同过滤 KNN 基于降维状态观测器的曝气量最优控制仿真研究 被引量:3 2012年 为降低污水处理厂曝气过程的能耗,对曝气系统的优化控制进行了研究.首先,建立了基于活性污泥模型ASM1的曝气系统的简化模型;然后,利用降维状态观测器重构在线不可测状态,提出了基于降维状态观测器的曝气量最优控制策略;最后,将该优化控制策略应用于污水处理基准仿真模型BSM1,仿真采用晴天进水数据.结果表明,与溶解氧的PID控制相比,最优控制在保证出水氨氮浓度和化学需氧量等水质的情况下,降低了曝气量和出水总氮浓度,同时曝气能耗相比PID控制可下降5%以上,并且改善了出水指数. 吴杰 罗健旭 张照生关键词:溶解氧 降维状态观测器 最优控制 基于DE-BP算法的模糊神经网络控制器及其在污水处理溶解氧浓度控制上的应用 被引量:1 2013年 针对污水处理过程这一多变量、强耦合的复杂非线性系统,提出了一种基于差分进化算法的模糊神经网络控制方法,并应用于污水处理过程溶解氧浓度的控制。首先利用差分进化(DE)结合BP的混合算法对给定的模糊神经网络控制器结构参数进行离线优化,然后利用BP算法较强的局部搜索能力,对参数进一步在线调整。将所提出的控制器用于污水处理BSM1仿真平台的溶解氧浓度控制,控制性能优于常规的模糊控制器,仿真结果表明了该控制策略的有效性。 张照生 罗健旭关键词:污水处理 溶解氧浓度 差分进化 模糊神经网络 一种改进的I-Unet网络的皮肤病图像分割算法 被引量:15 2019年 黑色素瘤是常见的皮肤癌,皮肤病图像分割在皮肤癌诊断过程中起到至关重要的作用。为了利用I.Unet深度神经网络强大的编码解码功能来自动分割出皮肤病病灶区域,文中提出一种改进的I.Unet网络的皮肤病图像分割算法。该方法采用空洞卷积扩大卷积感受野,利用类Inception和循环神经网络(RCNN)分别提取图像不同尺度的特征,并进行多尺度特征融合,运用全连接条件随机场(CRF)进行图像后处理。结果表明,所提算法在皮肤病图像分割中取得了良好的效果,算法的Jaccard系数达到了0.780,Dice系数稳定在0.871;与同类最佳研究结果相比,Jaccard系数及Dice系数分别提高了1.5%,2.2%,表明该方法有效提升了网络图像分割的性能。 蒋宏达 叶西宁关键词:皮肤病 图像分割 行人检测中非极大值抑制算法的改进 被引量:20 2015年 行人检测是计算机视觉领域的难点和热点问题。行人检测可大致划分为3个部分:特征提取、分类和非极大值抑制(Non-maximum Suppression,NMS)。当前的研究工作主要集中在特征提取、特征学习和分类器等方向,而非极大值抑制方向鲜有改进。目前常用的非极大值抑制算法是贪心策略,抑制时只使用了单一的重合面积信息。针对该问题,在ACF(Aggregate Channel Features)检测算法的基础上,对非极大值抑制进行了3项改进,显著地提升了算法的精度,并且算法的时间消耗只有略微的增加。在INRIA数据集上,单独使用引入尺度比的动态面积阈值NMS时能降低平均对数漏检率(MR)0.99%;单独使用保留外围检测分数相近的检测窗口的策略时NMS能降低MR 1.25%;两者结合可降低MR 2.5%;结合后,再对已经被抑制的检测窗口重复抑制,MR降低了2.63%,达到14.22%。 陈金辉 叶西宁关键词:行人检测 非极大值抑制 目标检测 Adaptive neural control for pure-feedback nonlinear time-delay systems with unknown dead-zone: a Lyapunov-Razumikhin method 被引量:2 2013年 This paper addresses the problem of adaptive neural control for a class of uncertain pure-feedback nonlinear systems with multiple unknown state time-varying delays and unknown dead-zone. Based on a novel combination of the Razumikhin functional method, the backstepping technique and the neural network parameterization, an adaptive neural control scheme is developed for such systems. All closed-loop signals are shown to be semiglobally uniformly ultimately bounded, and the tracking error remains in a small neighborhood of the origin. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control schemes. Zhaoxu YU Jianxu LUO Ji LIU关键词:TIME-DELAY DEADZONE 具有输入时滞的随机非线性系统的自适应神经网络控制 2012年 考虑一类具有输入时滞的随机非线性系统的自适应神经网络控制问题。通过定义含输入积分项的设计变量,将输入时滞系统转变为非时滞系统。结合神经网络控制、积分中值定理与Decoupled Backstepping技巧,针对该类系统提出一套自适应控制策略。所提出的控制器保证闭环系统的所有信号皆4阶矩半全局一致最终有界,并且跟踪误差收敛于原点附近的小邻域内。仿真实验结果验证了所提出控制策略的有效性。 余昭旭关键词:随机非线性系统 自适应控制 BACKSTEPPING 输入时滞 基于WU-Net网络的肺结节图像分割算法 被引量:5 2022年 深度卷积神经网络在医学图像分割领域运用广泛,目前的网络改进普遍是引入多尺度融合结构,增加了模型的复杂度,在提升精度的同时降低了训练效率。针对上述问题,提出一种新型的WU-Net肺结节图像分割方法。该方法对U-Net网络进行改进,在原下采样编码通路引入改进的残余连接模块,同时利用新提出的dep模块改进的信息通路完成特征提取和特征融合。实验利用LUNA16的数据集对WU-Net和其他模型进行训练和验证,在以结节为尺度的实验中,Dice系数和交并比分别能达到96.72%、91.78%;在引入10%的负样本后,F;值达到了92.41%,相比UNet3+提高了1.23%;在以肺实质为尺度的实验中,Dice系数和交并比分别达到了83.33%、66.79%,相比RU-Net分别提升了1.35%、2.53%。相比其他模型,WU-Net模型的分割速度最快,比U-Net提升了39.6%。结果显示,WU-Net提升肺结节分割效果的同时加快了模型的训练速度。 张宇杰 叶西宁关键词:多尺度融合 图像分割