您的位置: 专家智库 > >

国家自然科学基金(40705035)

作品数:6 被引量:35H指数:4
相关作者:谢正辉田向军更多>>
相关机构:中国科学院大气物理研究所更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划更多>>
相关领域:天文地球农业科学自然科学总论更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 5篇天文地球
  • 1篇农业科学
  • 1篇自然科学总论

主题

  • 3篇POD
  • 2篇VARIAT...
  • 2篇ASSIMI...
  • 2篇ENKF
  • 2篇EXPLIC...
  • 1篇四维变分
  • 1篇同化
  • 1篇资料同化
  • 1篇网格
  • 1篇显式
  • 1篇滤波
  • 1篇本征正交分解
  • 1篇SAMPLE
  • 1篇SOIL
  • 1篇SVD
  • 1篇VAR
  • 1篇3-D
  • 1篇ENSEMB...
  • 1篇FRAMEW...
  • 1篇KALMAN...

机构

  • 2篇中国科学院大...

作者

  • 2篇田向军
  • 2篇谢正辉

传媒

  • 3篇Scienc...
  • 2篇中国科学(D...
  • 1篇Atmosp...

年份

  • 4篇2009
  • 2篇2008
6 条 记 录,以下是 1-6
排序方式:
Effects of sample density on the assimilation performance of an explicit four-dimensional variational data assimilation method被引量:2
2009年
The concepts of sample sphere radius and sample density are proposed in this paper to help illustrate that different vector transformations result in diverse sample density with the same sample ensemble, which finally affects their assimilation performance. Several numerical experiments using a onedimensional (1-D) soil water equation and synthetic observations are conducted to evaluate this new theory in land data assimilation.
TIAN XiangJunXIE ZhengHui
关键词:ASSIMILATIONSAMPLE
An explicit four-dimensional variational data assimilation method based on the proper orthogonal decomposition: Theoretics and evaluation被引量:4
2009年
The proper orthogonal decomposition (POD) method is used to construct a set of basis functions for spanning the ensemble of data in a certain least squares optimal sense. Compared with the singular value decomposition (SVD), the POD basis functions can capture more energy in the forecast ensemble space and can represent its spatial structure and temporal evolution more effectively. After the analysis variables are expressed by a truncated expansion of the POD basis vectors in the ensemble space, the control variables appear explicitly in the cost function, so that the adjoint model, which is used to de-rive the gradient of the cost function with respect to the control variables, is no longer needed. The application of this new technique significantly simplifies the data assimilation process. Several as-similation experiments show that this POD-based explicit four-dimensional variational data assimila-tion method performs much better than the usual ensemble Kalman filter method on both enhancing the assimilation precision and reducing the computation cost. It is also better than the SVD-based ex-plicit four-dimensional assimilation method, especially when the forecast model is not perfect and the forecast error comes from both the noise of the initial filed and the uncertainty of the forecast model.
TIAN XiangJunXIE ZhengHui
关键词:PODASSIMILATION4DVAREXPLICITMETHOD
A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing被引量:11
2008年
The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation. The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data as- similation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in considera- tion of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process, while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heteroge- neity and soil water thawing and freezing. With the improvement of soil moisture simulation, the soil temperature-simulated precision can be also improved to some extent.
TIAN XiangJunXIE ZhengHui
关键词:ENKFSOILFRAMEWORKSOILFREEZING
基于本征正交分解的显式四维变分同化方法:理论与验证被引量:7
2009年
将本征正交分解(POD)方法用于四维空间预报集合提取标准正交基,该标准正交基在最小二乘意义下是最优的,与奇异值分解(SVD)技术相比,它能捕捉到预报集合空间更多的能量,能够更好地表征四维变量的空间结构以及时间演变特征.将分析向量依截断的POD基展开后,控制变量会显式地出现在代价函数中,避免了传统的四维变分方法所必需的伴随模式的运用,使得同化过程简单.用土壤湿度预报方程和人造资料进行一系列的数值试验对该基于本征正交分解的显式变分方法与基于SVD基的方法以及集合Kalman滤波进行比较,结果表明:POD/SVD方法从同化精度和同化时效上都要远远优于一般的集合Kalman滤波方法;由于POD基在最小二乘意义下的最优性,基于POD分解的同化方法要优于基于SVD分解的方法,尤其在模式存在误差的情况下表现得更为明显.
田向军谢正辉
关键词:资料同化四维变分本征正交分解
An Ensemble-Based Three-Dimensional Variational Assimilation Method for Land Data Assimilation被引量:6
2009年
Land surface models are often highly nonlinear with model physics that contain parameterized discontinuities. These model attributes severely limit the application of advanced variational data assimilation methods into land data assimilation. The ensemble Kalman filter (EnKF) has been widely employed for land data assimilation because of its simple conceptual formulation and relative ease of implementation. An updated ensemble-based three-dimensional variational assimilation (En3-DVar) method is proposed for land data assimilation.This new method incorporates Monte Carlo sampling strategies into the 3-D variational data assimilation framework. The proper orthogonal decomposition (POD) technique is used to efficiently approximate a forecast ensemble produced by the Monte Carlo method in a 3-D space that uses a set of base vectors that span the ensemble. The data assimilation process is thus significantly simplified. Our assimilation experiments indicate that this new En3-DVar method considerably outperforms the EnKF method by increasing assimilation precision. Furthermore, computational costs for the new En3-DVar method are much lower than for the EnKF method.
TIAN Xiang-Jun XIE Zheng-Hui
关键词:PODENKF
考虑次网格变异性和土壤冻融过程的土壤湿度同化方案被引量:12
2008年
集合Kalman滤波以其简单有效的特点在陆面数据同化中广泛应用,通常作为预报模型的陆面过程模式往往要考虑模式次网格变异性和土壤冻融过程,若对此不加考虑而直接对土壤湿度进行同化可能会使得同化结果发生偏差.将双集合Kalman滤波应用于土壤湿度的同化,基于NCAR/CLM陆面过程模式建立了一个考虑次网格变异性和土壤冻融过程的土壤湿度同化方案:在同一个时间步内用状态滤波对模式网格内某片上液态水分含量进行优化,用参数滤波对该片上的固态水分含量和其他片上的液态/固态水分含量进行优化,由此考虑模式次网格变异性和土壤冻融过程的影响,从而实现对整个模式网格上土壤湿度的同化.初步的同化试验表明:其同化效果在有、无土壤冻融阶段都优于一般的不考虑次网格变异性和土壤冻融变化的同化方案;该同化方案不仅能够提高那些有直接观测信息的土壤层的土壤湿度模拟精度,还能在一定程度上改善那些没有任何观测信息的土壤层的模拟效果;另外,土壤湿度同化结果的改善还能在一定程度上提高陆面模式对于土壤温度的模拟精度.
田向军谢正辉
关键词:KALMAN滤波
共1页<1>
聚类工具0