A new analog error correction (AEC) scheme based on the moving North Pacific index (MNPI) is designed in this study. This scheme shows obvious improvement in the prediction skill of the operational coupled general circulation model (CGCM) of the National Climate Center of China for the rainy season rainfall (RSR) anomaly pattern correlation coefficient (ACC) over the mid-to-lower reaches of the Yangtze River (MLRYR). A comparative analysis indicates that the effectiveness of the new scheme using the MNPI is better than the system error correction scheme using the North Pacific index (NPI). A Euclidean distance- weighted mean rather than a traditional arithmetic mean, is applied to the integration of the analog year's prediction error fields. By using the MNPI AEC scheme, independent sample hindcasts of RSR during the period 2003-2009 are then evaluated. The results show that the new scheme exhibited a higher forecast skill during 2003-2009, with an average ACC of 0.47; while the ACC for the NPI case was only 0.19. Furthermore, the forecast skill of the RSR over the MLRYR is examined. In the MNPI case, empirical orthogonal function (EOF) was used in the degree compression of the prediction error fields from the CCCM, whereas the AEC scheme was applied only to its first several EOF components for which the accumulative explained variance accounted for 80% of the total variance. This further improved the ACC of the independent sample hindcasts to 0.55 during the 7-yr period.
Based on nonlinear prediction and information theory, vertical heterogeneity of predictability and information loss rate in geopotential height field are obtained over the Northern Hemisphere. On a seasonal-to-interannual time scale, the predictability is low in the lower troposphere and high in the mid-upper troposphere. However, within mid-upper troposphere over the subtropics ocean area, there is a relatively poor predictability. These conclusions also fit the seasonal time scale. Moving to the interannual time scale, the predictability becomes high in the lower troposphere and low in the mid-upper troposphere, contrary to the former case. On the whole the interannual trend is more predictable than the seasonal trend. The average information loss rate is low over the mid-east Pacific, west of North America, Atlantic and Eurasia, and the atmosphere over other places has a relatively high information loss rate on all-time scales. Two channels are found steadily over the Pacific Ocean and Atlantic Ocean in subtropics. There are also unstable channels. The four- season influence on predictability and information communication are studied. The predictability is low, no matter which season data are removed and each season plays an important role in the existence of the channels, except for the winter. The predictability and teleconnections are paramount issues in atmospheric science, and the teleconnections may be established by communication channels. So, this work is interesting since it reveals the vertical structure of predictability distribution, channel locations, and the contributions of different time scales to them and their variations under different seasons.