为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA提取遥感影像的非线性可分特征,然后在KDLDA子空间采用最小距离分类器进行分类识别。机载可见光/红外成像光谱仪(Airborne Visible/Infrared Imaging Spectrometer,AVIRIS)的高光谱影像识别结果表明,相比原空间法、LDA子空间法、直接线性判别分析(Direct Linear Discriminant Analysis,DLDA)子空间法、核线性判别分析(Kernel Linear Discriminant Analysis,KLDA)子空间法,KDLDA子空间法可显著提高识别效率。
In this paper, a new preference multi-objective optimization algorithm called immune clone algorithm based on reference direction method (RD-ICA) is proposed for solving many-objective optimization problems. First, an intelligent recombination operator, which performs well on the functions comprising many parameters, is introduced into an immune clone algorithm so as to explore the potentially excellent gene segments of all individuals in the antibody pop- ulation. Second, a reference direction method, a very strict ranking based on the desire of decision makers (DMs), is used to guide selection and clone of the active population. Then a light beam search (LBS) is borrowed to pick out a small set of individuals filling the external population. The proposed method has been extensively compared with other recently proposed evolutionary multi-objective optimization (EMO) approaches over DTLZ problems with from 4 to 100 objectives. Experimental results indicate RD-ICA can achieve competitive results.
Ruochen LIU Chenlin MA Fei HE Wenping MA Licheng JIAO
An evolutionary network driven by dynamics is studied and applied to the graph coloring problem. From an initial structure, both the topology and the coupling weights evolve according to the dynamics. On the other hand, the dynamics of the network are determined by the topology and the coupling weights, so an interesting structure-dynamics co-evolutionary scheme appears. By providing two evolutionary strategies, a network described by the complement of a graph will evolve into several clusters of nodes according to their dynamics. The nodes in each cluster can be assigned the same color and nodes in different clusters assigned different colors. In this way, a co-evolution phenomenon is applied to the graph coloring problem. The proposed scheme is tested on several benchmark graphs for graph coloring.