Experiments were conducted to investigate the deformation of cantilever sandwich beams with pyramidal truss cores subjected to impact by a projectile at their tips.A new technique was employed to the fabrication of sandwich beams with pyramidal truss cores.For a better observation of large deformation of specimens during impact process,a high-speed digital video camera was successfully used to capture the instant shapes of the deformed beams.A projectile collection device was designed and installed to avoid the projectile flying away from the beam tips after impact and thus the kinetic energy imparted to the beams was measurable.The experiments show that the sandwich beams have a superior shock resistance compared to the monolithic beams of the same material and mass.Further,finite element simulations were performed to gain insight into the deformations and plastic energy absorptions in the sandwich beams.
An analytical model is developed to assess the elastic-plastic dynamic response of fully backed sandwich plates under localized impulse load.The core is modeled as an elastic-perfectly plastic foundation.The top face sheet is treated as an individual plate resting on the foundation.The elastic-plastic analysis for the top face sheet is based on a minimum principle in dynamic plasticity associated with the finite difference technique.The effects of spatial and temporal distributions of the impulsive loading on the dynamic response of sandwich plates are discussed.The model can be used to predict the impulse-induced local effect on fully backed sandwich plates.
Hua Liu Wuchao Chen Jialing Yang (The Solid Mechanics Research Center, Beijing University of Aeronautics and Astronautics, Beijing 100191, China)