The transport properties of a conjugated dipyrimidinyl-diphenyl diblock oligomer sandwiched between two gold electrodes, as recently reported by [Diez-Perez et al. Nature Chem. 1 635 (2009)], are theoretically investigated using the fully self-consistent nonequilibrium Green's function method combined with density functional theory. Two kinds of symmetrical anchoring geometries are considered. Calculated current-voltage curves show that the contact structure has a strong effect on the rectification behaviour of the molecular diode. For the equilateral triangle configuration, pronounced rectification behaviour comparable to the experimental measurement is revealed, and the theoretical analysis indicates that the observed rectification characteristic results from the asymmetric shift of the perturbed molecular energy levels under bias voltage. While for the tetrahedron configuration, both rectification and negative differential conductivity behaviours are observed. The calculated results further prove the close dependence of the transporting characteristics of molecular junctions on contact configuration.
Based on the first-principles computational method and elastic scattering Green's function theory, we have investigated the effect of gate electric field on electronic transport properties of a series of single organic molecular junctions theoretically. The numerical results show that the molecular junctions that have redox centers and relatively large dipole moments parallel gate direction can respond to the gate electric field remarkably. The current-voltage properties of 2,5-dimethyl-thiophene-dithiol present N-channel-metal-oxide-semiconductorlike characteristics. Its distinct current-voltage properties can be understood from the evo- lution of eigenvalues, coupling energies, and atomic charges with gate electric field.
Based on the first-principles computational method and the elastic scattering Green's function theory, we have investigated the electronic transport properties of different oligothiophene molecular junctions theoretically. The numerical results show that the difference of geometric symmetries of the oligothiophene molecules leads to the difference of the contact configurations between the molecule and the electrodes, which results in the difference of the coupling parameters between the molecules and electrodes as well as the delocalization properties of the molecular orbitals. Hence, the series of oligothiophene molecular junctions display unusual conductive properties on the length dependence.