The north-trending Liupan Shan (六盘山) is an important tectonic boundary between the Tibetan Plateau and the Ordos platform. The Late Cenozoic red earth deposits of the Liupan Shan record its tectonic history and environmental effects. In this article we report a new Late Cenozoic red earth section from an intermontane basin in the southern part of the Liupan Shan. Lithofacies analysis, paleomagnetic and fission-track chronologies, and paleocurrent analysis have been employed to identi- fy the tectonic uplift events of the Liupan Shan. Based on the age constraints of mammal fossils, the pa- leomagnetic polarity zones of the Huating (华亭) Section can be approximately correlated with the standard polarity zones that lie between C3An.2n and C5n.ln of the Geomagnetic Polar- ity Timescale; the bottom age of this section is approximately 10 Ma. Based on this and the previous studies, we infer that a tectonic event commenced in the southern Liupan Shan in this interval between 8.3 and 8.7 Ma, accompanied by a remarkable increase in sediment accumulation rate. Field observations, fission-track dating, determinations of grain-size frequency distribu- tions and the vertebrate fossils found there suggest that the red earth deposits were reworked by water and mainly transported by fluvial-alluvial processes from the adjacent area.
The Lüliang Mountains, located in the North China Craton, is a relatively stable block, but it has experienced uplift and denudation since the late Mesozoic. We hence aim to explore its time and rate of the exhumation by the fission-track method. The results show that, no matter what type rocks are, the pooled ages of zircon and apatite fission-track range from 60.0 to 93.7 Ma and 28.6 to 43.3 Ma, respectively; all of the apatite fission-track length distributions are unimodal and yield a mean length of -13 μm; and the thermal history modeling results based on apatite fission-track data indicate that the time-temperature paths exhibit similar patterns and the cooling has been accelerated for each sample since the Pliocene (c.5 Ma). Therefore, we can conclude that a successive cooling, probably involving two slow (during c.75-35Ma and 35-5Ma) and one rapid (during c.5 Ma-0 Ma) cooling, has occurred through the exhumation of the Liiliang Mountains since the late Cretaceous. The maximum exhumation is more than 5 km under a steady-state geothermal gradient of 35℃/km. Combined with the tectonic setting, this exhumation may be the resultant effect from the surrounding plate interactions, and it has been accelerated since c.5 Ma predominantly due to the India-Eurasia collision.
The expansion of inland Asia deserts has considerably influenced the environmental, social and economic activities in Asia. Aridification of inland Asia, especially timing of the initiation of Asian desertification, is a contentious topic in paleoclimatology. Late Cenozoic eolian loess-red clay sequences on the Chinese Loess Plateau, which possess abundant paleoclimatic and paleo-environmental information, can be regarded as an indicator of inland Asia desertification. Here we present a detailed magnetostratigraphic investigation of a new red clay sequence about 654 m in Zhuanglang located at the western Chinese Loess Plateau. Sedimentological, geochemical, mineralogical, and quartz morphological lines of evidence show that the red clay is of eolian origin. Magnetostratigraphic correlations indicate that this core sequence spans from 25.6 to 4.8 Ma, and typical eolian red clay appears as early as 25 Ma. This extends the lower limit of the red clay on the Chinese Loess Plateau from the previously thought early Miocene back into the late Oligocene. This new red clay record further implies that the inland Asia desertification was initiated at least by the late Oligocene. This sequence provides a unique high-resolution geological record for understanding the inland Asia desertification process since the late Oligocene.
The Pochengzi Glaciation is a typical glaciation in Quaternary in the Tianshan Mountains. The glacial landforms comprise several integrated end moraines, like a fan spreading from the north to the south at the mouth of the Muzhaerte River valley and on the piedmont on the southeastern slope of the Tumur Peak, the largest center of modern glaciation in the Tianshan Mountains. The landforms recorded a complex history of the ancient glacier change and contained considerable information of the glacial landscape evolution, and dating these landforms helps us understand the temporal and spatial shifts of the past cryosphere in this valley and reconstruct the paleoenvironment in this region. Electron spin resonance (ESR) dating of the glacial tills in the upper stratum from a well-exposed section, end moraines, and associated outwashes was carried out using Ge centers in quartz grains, which are sensitive to the sunlight and grinding. The results could be divided into three clusters, 13.6–25.3, 39.5–40.4 and 64.2–71.7 ka. Based on the principle of geomorphology and stratigraphy and the available paleoen- vironmental data from northwestern China, the end moraines were determined to deposit in the Last Glaciation. The landforms and the three clusters of ages demonstrate that at least three large glacial advances occurred during the Pochengzi Glaciation, which are corresponding to marine oxygen isotope stage 4 (MIS4), MIS3b and MIS2. The landforms also indicate that the gla- ciers were compound valley glacier in MIS2 and MIS3b and piedmont glacier in MIS4, and the ancient Muzhaerte glacier were 94, 95 and 99 km at their maximum extensions in these three glacial advances.