The service condition determines the Roiling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.
CUI HuaweiCUI XiufangWANG HaidouXING ZhiguoJIN Guo
Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.
The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effective and efficient methods for the optimum selection among different types of mechanism candidates. This paper presents a new strategy for the purpose of optimum mechanism type selection based on the modified particle swarm optimization method. The concept of sub-swarm is introduced to represent the different mechanisms generated by the type synthesis, and a competitive mechanism is employed between the sub-swarms to reassign their population size according to the relative performances of the mechanism candidates to implement the optimization. Combining with a modular modeling approach for fast calculation of the performance index of the potential candidates, the proposed method is applied to determine the optimum mechanism type among the potential candidates for the desired manipulator. The effectiveness and efficiency of the proposed method is demonstrated through a case study on the optimum selection of mechanism type of a heavy manipulator where six feasible candidates are considered with force capability as the specific performance index. The optimization result shows that the fitness of the optimum mechanism type for the considered heavy manipulator can be up to 0.578 5. This research provides the instruction in optimum selection of mechanism types for robotic manipulators.
Two efficient single-site Ru water oxidation catalysts [Ru(bda)(pic)(Ln)] (bda=2,2'-bipyridine- 6,6'-dicarboxylic acid, pic=picoline, Ll=4,5-bipyridine-2,7-di-tett-butyl-9,9-dimethylxanthene, L2=4- pyridine-5-phenyl-2,7-di-tert-butyl-9,9-dimethylxanthene) were only synthesized containing different xanthene ligands at the axial site. These complexes have been thoroughly characterized by spectroscopic (UV-vis, NMR) and electrochemical (CV and DIV) techniques. Kinetic analysis proved that the mechanism of water oxidation comprises the water nucleophilic attack process on high-valence ruthenium species. It is found that the catalyst I displayed higher activity than catalyst 2 on water oxidation, caused by the protonation of the axial ligand LI with a free pyridine.
Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were investigated. Hydrocarbon composition of gasoline was analyzed by gas chromatograph. Experimental results showed that conversion of cycle oil was low on account of its poor crackability performance, and the effect of reaction conditions on gasoline yield was obvi- ous. The paraffin content was very high in gasoline. Based on the experimental yields under different reaction conditions, a model for prediction of gasoline and diesel yields was established by radial basis function neural network (RBFNN). In the model, the product yield was viewed as function of reaction conditions. Particle swarm optimization (PSO) algorithm with global search capability was used to obtain optimal conditions for a highest yield of light oil. The results showed that the yield of gasoline and diesel predicted by RBF neural network agreed well with the experimental values. The optimized reac- tion conditions were obtained at a reaction temperature of around 520 ~C, a catalyst to oil ratio of 7.4 and a space velocity of 8 h~. The predicted total yield of gasoline and diesel reached 42.2% under optimized conditions.
The generalized successive overrelaxation (GSOR) method was presented and studied by Bai, Parlett and Wang [Numer. Math. 102(2005), pp.1-38] for solving the augmented system of linear equations, and the optimal iteration parameters and the corresponding optimal convergence factor were exactly obtained. In this paper, we further estimate the contraction and the semi-contraction factors of the GSOR method. The motivation of the study is that the convergence speed of an iteration method is actually decided by the contraction factor but not by the spectral radius in finite-step iteration computations. For the nonsingular augmented linear system, under some restrictions we obtain the contraction domain of the parameters involved, which guarantees that the contraction factor of the GSOR method is less than one. For the singular but consistent augmented linear system, we also obtain the semi-contraction domain of the parameters in a similar fashion. Finally, we use two numerical examples to verify the theoretical results and the effectiveness of the GSOR method.
Studying interaction between peptides and lipid membranes is helpful for understanding the working mechanism of amyloidogenic peptides and antimicrobial peptides, which are toxic to cells through disruption of the cell membrane. Although many efforts have been made to find out common mechanisms of the peptide-induced membrane disruption, detailed information on how the peptide's amino acid sequence affects its interaction with lipid bilayers is still lacking. In this study, three peptides termed as Pep11, P11-2, and QQ11, which share a similar backbone, were employed to explore how modifications on the peptide sequence as well as terminal groups influenced its interaction with the lipid membrane. Atomic force microscopy data revealed that the peptides could deposit on the membranes and induce defects with varied morphologies and stiffness. Fluorescence resonance energy transfer(FRET) experiments indicated that the introduction of the three peptides resulted in different FRET effects on either liquid or gel lipid membranes. DPH fluorescence anisotropy and Laurdan's generalized polarization analysis showed that P11-2 could insert into the lipid membrane and impact the lipid hydrophobic region while QQ11 influenced the order of the hydrophilic head of the lipid membrane. With these results, we have illustrated how these peptides interacted differently with the lipid membrane because of the modification of their sequences. Although these peptides did not relate to disease and antibiosis, we hope these results still could provide some clues for partly understanding the working mechanism of amyloidogenic peptides and antimicrobial peptides.
Starting from santonin,the total syntheses of cytotoxic monomeric,dimeric and trimeric quainolides dehydrozalu...
Yong Qin West China School of Pharmacy,Sichuan University,Chengdu 610041 P.R.China Innovative Drug Research Centre,Chongqing University,Chongqing 401331,P.R.China
It's promising to use Software-Defined Networking(SDN) and Network Functions Virtualization(NFV) to integrate satellite and terrestrial networks. To construct network service function chains in such a multi-domain environment, we propose a horizontal-based Multi-domain Service Function Chaining(Md-SFC) orchestration framework. In this framework, multi-domain orchestrators can coordinate with each other to guarantee the end-to-end service quality. Intra-domain orchestrators also coordinate SDN controllers and NFV management components to implement intra-domain service function chains. Based on this, we further propose a heuristic SFC mapping algorithm with a cooperative inter-domain path calculation method to map service function chains to infrastructures. In this method, master multi-domain orchestrator and intra-domain orchestrators coordinate to select proper inter-domain links. We compare the cooperative method with a naive uncooperative way that domains' topology information is provided to the master multi-domain orchestrator and it calculates the shortest inter-domain path between intra-domain service function chains directly. Simulation results demonstrate that our solution is feasible. It is able to construct end-to-end performance guaranteed service function chain by horizontal-based cooperation. The cooperative inter-domain path calculation method decreasesthe mapping load for the master orchestrator and gets the same end-to-end performance.